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Angular momentum of light in an optical nanofiber
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We show that light confined in a circularly polarized fundamental mode of a nanofiber has a finite angular
momentum, with both spin and orbital components. We derive exact analytical expressions for the angular
momentum and its spin and orbital components. We show that the spin component is dominant when the fiber
radius is small or large compared to the light wavelength. For intermediate fiber radii, a substantial orbital
component appears, which is absent in the two limits mentioned above. The orbital component is maximized
when the fiber radius is about one-fourth of the light wavelength.
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I. INTRODUCTION

Electromagnetic radiation carries both energy and mo-
mentum. An interaction between radiation and atoms inevi-
tably involves an exchange of momentum. Such an exchange
can involve either linear momentum or angular momentum.
This leads to radiation forces and torques, and often has me-
chanical consequences. Spectacular results have been ob-
tained in manipulation and control of motion and tempera-
ture of free atoms by radiation forces �1�. However, most of
the treatments of the mechanical effects of radiation on at-
oms have been concerned almost exclusively with the linear
momentum to control the translational motion of atoms �2�.

Recently, there has been a growing recognition of the po-
tential of the orbital angular momentum associated with cer-
tain types of laser lights to control the rotational motion of
atoms and ions �3,4�. It has been shown that Laguerre-
Gaussian �5–7� and Bessel �8� light beams carry orbital an-
gular momentum associated with the azimuthal-phase depen-
dence of the field distribution. Such orbital angular
momentum can be transferred to the center-of-mass motion
of atoms through the atom-field interaction �3,4�. Certain
beams with no phase singularity, such as focused elliptical
Gaussian beams, can also possess orbital angular momentum
�9�. A number of experiments have demonstrated the influ-
ence of orbital angular momentum of light on polarizable
matter, leading to interesting features, such as the optical
spanner effect �10�.

Although angular momentum of light is a fundamental
characteristic, it has not been studied well enough. In addi-
tion, only a few forms of light beams are known to possess
orbital angular momentum. Therefore, it is necessary to ex-
tend the study of angular momentum of light and to search
for new forms of light beams that possess orbital angular
momentum.

A special form of propagating light waves is light in a
guided mode of an optical fiber �11�. When the fiber is thin
compared to the light wavelength, the field can penetrate
deeply into the space outside the fiber, creating an evanes-
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cent wave �12,13�. It has been shown that the optical poten-
tial generated by the field outside the thin fiber permits the
control and manipulation of individual neutral atoms in a
microscopic �at subwavelength size� optical dipole trap �12�
that is of great importance for various applications in both
fundamental and applied physics �14�.

In this paper, we study the angular momentum of light in
a guided mode of an optical fiber. We show that light con-
fined in a circularly polarized fundamental mode of a nanofi-
ber has a finite angular momentum, with both spin and or-
bital components.

Before we proceed, we note that, due to recent develop-
ments in taper fiber technology, thin fibers can be produced
with diameters down to 50 nm �15�. Thin fiber structures can
be used as building blocks in future atom and photonic
micro- and nano-devices.

The paper is organized as follows. In Sec. II we describe
the field in a circularly polarized fundamental guided mode.
In Sec. III we present analytical results for the angular mo-
mentum of the guided field. In Sec. IV we present numerical
results. Our conclusions are given in Sec. V.

II. FIELD IN A CIRCULARLY POLARIZED
FUNDAMENTAL GUIDED MODE

We consider a light field propagating in a circularly po-
larized fundamental mode of a subwavelength-diameter fiber
�nanofiber� �see Fig. 1�. The frequency, free-space wave
number, and free-space wavelength of the light are denoted

FIG. 1. �Color online� Components and trajectory of the Poyn-
ting vector of the field in a circularly polarized fundamental mode
of a nanofiber. The period of the trajectory is 2� /� where �

=S� /rSz.
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by �, k=� /c, and �=2� /k, respectively. The thin fiber has a
cylindrical silica core, with the radius a and the refractive
index n1, and an infinite vacuum clad, with the refractive
index n2=1. For certainty, we assume that the rotation direc-
tion of the field polarization around the fiber axis z is coun-
terclockwise. We use the cylindrical coordinates �r ,� ,z�.

We represent the electric and magnetic components of the
field as E= �Ee−i�t+E*ei�t� /2 and H= �He−i�t+H*ei�t� /2,
respectively. The cylindrical components of the envelope
vectors E and H are given, for r�a, by �11�

Er = iNq

h

K1�qa�
J1�ha�

��1 − s�J0�hr� − �1 + s�J2�hr��ei��z+��,

E� = − Nq

h

K1�qa�
J1�ha�

��1 − s�J0�hr� + �1 + s�J2�hr��ei��z+��,

Ez = N2q

�

K1�qa�
J1�ha�

J1�hr�ei��z+��, �1�

and

Hr = N�	0n1
2q

�h

K1�qa�
J1�ha�

��1 − s1�J0�hr�

+ �1 + s1�J2�hr��ei��z+��,

H
 = iN�	0n1
2q

�h

K1�qa�
J1�ha�

��1 − s1�J0�hr�

− �1 + s1�J2�hr��ei��z+��,

Hz = iN 2q

��0

s
K1�qa�
J1�ha�

J1�hr�ei��z+��, �2�

and, for r�a, by

Er = iN��1 − s�K0�qr� + �1 + s�K2�qr��ei��z+��,

E� = − N��1 − s�K0�qr� − �1 + s�K2�qr��ei��z+��,

Ez = N2q

�
K1�qr�ei��z+��, �3�

and

Hr = N�	0n2
2

�
��1 − s2�K0�qr� − �1 + s2�K2�qr��ei��z+��,

H
 = iN�	0n2
2

�
��1 − s2�K0�qr� + �1 + s2�K2�qr��ei��z+��,

Hz = iN 2q

��0

sK1�qr�ei��z+��. �4�

Here � is the longitudinal propagation constant for the fiber
fundamental mode, h= �n1

2k2−�2�1/2 characterizes the radial
dependence of the field inside the fiber, and q= ��2

2 2 1/2
−n2k � characterizes the decay of the field outside the
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fiber. The notation Jn and Kn stand for the Bessel functions
of the first kind and the modified Bessel functions of the
second kind, respectively. The coefficient N characterizes
the amplitude of the field. For convenience, we have intro-
duced the notation s= �1/q2a2+1/h2a2� / �J1��ha� /haJ1�ha�
+K1��qa� /qaK1�qa��, s1= ��2 /k2n1

2�s, and s2= ��2 /k2n2
2�s.

Equations �1�–�4� show that the field possesses not only
two individual transverse �radial and azimuthal� components
but also a longitudinal �axial� component. The presence of
the common phase factor ei� in Eqs. �1�–�4� means that there
is an azimuthal-phase dependence. Such a phase dependence
is a feature of the field in the fundamental guided mode.
Note that the azimuthal-phase dependences of the longitudi-
nal components Ezẑ and Hzẑ are simple: they contain just the
first azimuthal harmonic ei�. However, the azimuthal-phase
dependences of the transverse components Et=Err̂+E��̂ and
Ht=Hrr̂+H��̂ are rather complicated. The reason is that, in
addition to the common phase factor ei� in the expressions
for Er and E� and, similarly, for Hr and H�, there is an
implicit azimuthal-phase dependence in the nature of the po-
lar basis vectors r̂ and �̂. The azimuthal-phase dependences
of Et and Ht can be seen more clearly in the spherical tensor
basis. This basis consists of the vectors u±1=  �x̂± iŷ� /�2
and u0= ẑ. They do not depend on �. In this basis, an arbi-
trary vector V can be expanded as V=−V1u−1−V−1u1
+V0u0,where V±1=  �Vx± iVy� /�2=  �Vr± iV��e±i� /�2 and
V0=Vz are the spherical tensor amplitudes. When, we use
Eqs. �1�–�4�, we can show that the spherical tensor ampli-
tudes El and Hl, where l=0, ±1, contain the azimuthal har-
monic ei�l+1�� �16�. Thus, the total field contains three azi-
muthal harmonics, namely 1, ei�, and e2i�. As known, a
common phase factor eil� results in an orbital angular mo-
mentum of l� per photon �3�. Therefore, the guided field may
possess an orbital angular momentum, which does not corre-
spond to a single quantum number l but rather a superposi-
tion of the three quantum numbers 0, 1, and 2 �see the next
section�.

An important characteristic of the light propagation is the
cycle-averaged Poynting vector

S = 1
2 Re�E � H*� . �5�

We denote the axial, azimuthal, and radial components of the
vector S in the cylindrical coordinates by the notation Sz, S�,
and Sr, respectively. For guided modes of fibers, we always
have Sr=0. When we insert Eqs. �1�–�4� into Eq. �5�, we find
that the axial and azimuthal components are given, for r
�a, by

Sz = �N�2
�	0n1

2q2

�h2

K1
2�qa�

J1
2�ha�

��1 − s��1 − s1�J0
2�hr�

+ �1 + s��1 + s1�J2
2�hr�� ,

S� = �N�2
�	0n1

2q2

�2h

K1
2�qa�

J1
2�ha�

��1 − 2s1 + s1s�J0�hr�

+ �1 + 2s1 + s1s�J2�hr��J1�hr� , �6�
and, for r�a, by
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Sz = �N�2
�	0n2

2

�
��1 − s��1 − s2�K0

2�qr�

+ �1 + s��1 + s2�K2
2�qr�� ,

S� = �N�2
�	0n2

2q

�2 ��1 − 2s2 + s2s�K0�qr�

− �1 + 2s2 + s2s�K2�qr��K1�qr� . �7�

The axial component Sz describes the energy flow that
propagates along the fiber. The azimuthal component S� de-
scribes the energy flow that circulates around the fiber. The
presence of this flow is due to the existence of the longitu-
dinal components Ez and Hz of the field in the fundamental
mode. The trajectory of the Poynting vector is described by
the spiral curve �r ,� ,z� where r=r0 and d� /dz=S� /rSz �6�.
Since Sz and S� do not depend on z, the rotation angle of the
Poynting vector is given by �=��0�+�z, where �=S� /rSz.
The period of the trajectory along the z axis is 2� /�. The
trajectory is illustrated in Fig. 1.

The propagation power Pz is determined as the integral of
Sz over the transverse plane of the fiber, that is,

Pz =	 Szd
2r . �8�

Here we have introduced the notation 
d2r=
0
2�d�
0

�r dr.
When we use the expressions for Sz given in Eqs. �6� and �7�,
we find Pz= Pz

�in�+ Pz
�out�, where

Pz
�in� = �N�2

�a2�	0n1
2

�

q2K1
2�qa�

h2J1
2�ha�

��1 − s��1 − s1��J0
2�ha�

+ J1
2�ha�� + �1 + s��1 + s1��J2

2�ha� − J1�ha�J3�ha��� ,

Pz
�out� = �N�2

�a2�	0n2
2

�
��1 − s��1 − s2��K1

2�qa� − K0
2�qa�� + �1

+ s��1 + s2��K1�qa�K3�qa� − K2
2�qa��� . �9�

The upper indices �in� and �out� indicate the contributions of
the field inside and outside the fiber, respectively.

When the fiber material is nonabsorbing and nondisper-
sive, the energy per unit length is given by

U =
�0

2
	 n2�E�2 d2r . �10�

Here n�r�=n1 and n2 for r�a and r�a, respectively. When
we insert Eqs. �1� and �3� into Eq. �10�, we find U=U�in�

+U�out�, where

U�in� = �N�2�a2�0n1
2q2K1

2�qa�
h2J1

2�ha� ��1 − s�2�J0
2�ha� + J1

2�ha��

+ �1 + s�2�J2
2�ha� − J1�ha�J3�ha�� + 2

h2

�2 �J1
2�ha�

− J �ha�J �ha�� ,
0 2 �
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U�out� = �N�2�a2�0n2
2��1 − s�2�K1

2�qa� − K0
2�qa��

+ �1 + s�2�K1�qa�K3�qa� − K2
2�qa��

+ 2
q2

�2 �K0�qa�K2�qa� − K1
2�qa��� . �11�

We note that the propagation power Pz is related to the en-
ergy per unit length U by the formula Pz=Uvg, where vg
=1/������d� /d��−1 is the group velocity of light in the
guided mode.

III. ANGULAR MOMENTUM OF THE GUIDED LIGHT
FIELD

For the electromagnetic field in free space, the linear mo-
mentum density is given by plocal=S /c2 �17�. For the field in
a dielectric medium, there are several formulations for the
linear momentum density �18�. The Abraham formulation
�19� takes plocal= �E�H� /c2. This expression is sometimes
interpreted as the field-only contribution to the momentum of
light. The Minkowski formulation �20� takes plocal= �D�B�.
In a recent paper �21�, Mansuripur suggested that the mo-
mentum of a photon in a dielectric medium has both electro-
magnetic and mechanical parts and hence is the average of
the traditional Abraham and Minkowski forms. The appro-
priate form remains contentious because the debate has not
been settled by experiments. Nevertheless, the Abraham for-
mulation is generally accepted �17,22�. Therefore, in our ba-
sic calculations, we adopt the Abraham formulation, that is,
we use the definition plocal= �E�H� /c2=S /c2 for the field
linear momentum density everywhere in space, inside and
outside the fiber. However, the results of the Minkowski ex-
pression will also be discussed.

With the above identification for the linear momentum
density, the angular momentum density of the electromag-
netic field is given by jlocal�r�plocal�= �r�S� /c2. The in-
tegration of jlocal over the cross-sectional plane of the fiber
yields the angular momentum per unit length

J 	 jlocal d2r =
1

c2 	 �r � S� d2r . �12�

The only nonzero component of J is aligned along the fiber
axis and is given by

J =
1

c2 	 rS� d2r . �13�

Thus, the axial angular momentum J is determined by the
azimuthal component S� of the Poynting vector. When we
substitute the expressions for S� given in Eqs. �6� and �7�
into Eq. �13�, we find J=J�in�+J�out�, where

J�in� = �N�2
2�a2�	0n1

2

�2c2

q2K1
2�qa�

h2J1
2�ha�

��1 + s1s�J1
2�ha�
− �1 + 2s1 + s1s�J0�ha�J2�ha�� ,
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J�out� = �N�2
2�a2�	0n2

2

�2c2 ��1 + s2s�K1
2�qa�

− �1 + 2s2 + s2s�K0�qa�K2�qa�� . �14�

The angular momentum J can be decomposed into the
sum of two terms, J=Jsp+Jorb, where

Jsp = �0	 �E � A� d2r �15�

and

Jorb = J − Jsp �16�

are interpreted as the spin and orbital parts, respectively
�17,23�. Here A is the vector potential in the Coulomb gauge.
The decomposition procedure is given in Ref. �23� for the
case of a field in free space. We adopt this decomposition for
the case of guided modes. However, we recognize that the
identification of terms as a spin or orbital is not unique �3�.

We write A= �Ae−i�t+A*ei�t� /2. In the case considered
here, we have A=E / i�. Hence, after time averaging, we
obtain Jsp= �i�0 /2��
�E�E*� d2r. The only nonzero com-
ponent of Jsp is aligned along the fiber axis and is given by

Jsp =
�0

�
	 Im�Er

*E�� d2r . �17�

When we insert Eqs. �1� and �3� into Eq. �17�, we find Jsp

=Jsp
�in�+Jsp

�out�, where

Jsp
�in� = �N�2

�a2�0

�

q2K1
2�qa�

h2J1
2�ha�

��1 − s�2�J0
2�ha� + J1

2�ha��

− �1 + s�2�J2
2�ha� − J1�ha�J3�ha��� ,

Jsp
�out� = �N�2

�a2�0

�
��1 − s�2�K1

2�qa� − K0
2�qa��

− �1 + s�2�K1�qa�K3�qa� − K2
2�qa��� . �18�

With the help of Eqs. �14� and �18�, we can calculate not
only the angular momentum per unit length J and the spin
component Jsp but also the orbital component

Jorb = J − Jsp. �19�

The angular momentum per unit length J and its compo-
nents Jsp and Jorb are proportional to the number of photons
per unit length Nph=U / ��. It is convenient to introduce the
normalized parameters

j 
J

Nph
=

J�in� + J�out�

U/ � �
,

jsp 
Jsp

N
=

Jsp
�in� + Jsp

�out�

U/ � �
,

ph
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jorb 
Jorb

Nph
= j − jsp, �20�

which characterize the angular momentum per photon and its
spin and orbital components, respectively, in the Abraham
formulation.

To get a deep insight into the angular momentum and its
spin and orbital components, we approximate these quanti-
ties in the limiting cases of small and large fiber radii. First,
we consider the limiting case of small fiber radii where

a � � . �21�

In this limit, the light field deeply penetrates into the outside
of the fiber. Indeed, when a is small enough, we have the
relation a���q−1. This yields q�k���h�a−1 or,
equivalently, qa�ka��a�ha�1. Hence, we get s�s2�
−1. Using the above relations as well as the property
limx→0K1�x� /K0�x�=�, we find from Eqs. �11�, �14�, and
�18� that

J � J�out� � Jsp � Jsp
�out� �

4�a2	0

�
�N�2K1

2�qa� �22�

and

U � U�out� � 4�a2�0�N�2K1
2�qa� . �23�

These approximate expressions give the limiting values j
� jsp�� and consequently jorb�0 for the case of thin fibers.

Next, we consider the limiting case of large fiber radii
where

a � � . �24�

In this limit, the light field is practically confined to the in-
side of the fiber. Indeed, when a is large enough, we have the
relation a���q−1. This yields �a�kan1�qa�ka�ha
�x0, where x0�2.405 is the first zero of the Bessel function
J0�x�. Hence, we get s�s1�−1. Using these relations as
well as the property J0�ha��J0�x0�=0, we find from Eqs.
�11�, �14�, and �18� that

J � J�in� � Jsp � Jsp
�in� �

4�a2�0

�

q2

h2 �N�2K1
2�qa� �25�

and

U � U�in� � 4�a2�0n1
2q2

h2 �N�2K1
2�qa� . �26�

Hence, we obtain the limiting values j� jsp� � /n1
2 and con-

sequently jorb�0 for the case of thick fibers. This result is in
agreement with the Abraham expression for the angular mo-
mentum of a circularly polarized photon in a dielectric me-
dium �22�.

According to the above analysis, in the limits of thin and
thick fibers, the orbital angular momentum is vanishing. In
these limits, the contributions from the field components E−1
and H−1, which do not depend on �, are dominant compared
to the contributions from the other field components. For
intermediate radii, the contributions from the field compo-
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nents E0 and H0, which contain the harmonic ei�, become
substantial. Therefore, in the intermediate regime, a substan-
tial orbital angular momentum may appear.

We emphasize that the expressions for J�in� and Jsp
�in� given

in Eqs. �14� and �18� are valid only in the Abraham formu-
lation. In the Minkowski formulation, we must add an addi-
tional factor n1

2. According to the Minkowski formulation,
the angular momentum per photon and its spin and orbital
components are given by

j�M� =
n1

2J�in� + J�out�

U/ � �
,

jsp
�M� =

n1
2Jsp

�in� + Jsp
�out�

U/ � �
,

jorb
�M� = j�M� − jsp

�M�. �27�

When we use expressions �22� and �23� for the limiting case
of thin fibers and expressions �25� and �26� for the limiting
case of thick fibers, we can show that j�M�� jsp

�M��� and
jorb
�M��0 in both limiting cases. Furthermore, our numerical

calculations presented in the next section �see Fig. 4� indi-
cate that j�M�=� for any fiber radii. Thus, the Minkowski
angular momentum of the guided light is the same as that for
the light in free space. This result is consistent with the result
of ray optics for the Minkowski angular momentum of a
light beam in a semi-infinite dielectric �22�.

IV. NUMERICAL RESULTS

In this section, we present results of numerical calcula-
tions for the angular momentum and its spin and orbital com-
ponents for the guided field. We illustrate in Fig. 2 the de-
pendences of j, jsp, and jorb on the fiber radius a. The light
wavelength is chosen to be �=852 nm. The corresponding

FIG. 2. Total �solid line�, spin �dashed line�, and orbital �dashed-
dotted line� angular momenta per photon in a circularly polarized
fundamental mode as functions of the fiber radius. The limiting
value � /n1

2 is shown by the dotted line. The light wavelength is �
=852 nm. The calculations are based on the Abraham expression
for the momentum of light.
refractive index of the fiber is n1=1.45. The refractive index
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of the vacuum clad is, as already stated before, n2=1. The
figure shows that j , jsp , jorb��. When the fiber radius is
small, namely a�100 nm, j and jsp approach their maxi-
mum value �, while jorb tends to zero. We observe that jorb
reaches its peak value of about 0.25� at a�222 nm, andjsp
reaches its minimum value of about 0.45� at a�437 nm.
When the fiber radius is large, namely a�400 nm, jorb re-
duces to zero. In this limit, j and jsp tend to have the same
nonzero value, which is estimated to be � /n1

2�0.48�. Thus,
the angular momentum per photon j is in the range from � to
� /n1

2. The contribution of the spin component jsp to j is
dominant when the fiber radius is small or large compared to
the light wavelength. For intermediate fiber radii, a substan-
tial orbital component jorb appears, which is absent in the two
limits mentioned above.

Since the dispersion of the fiber material is weak, the
normalized fiber size parameter ka is a good approximate
scaling parameter. Therefore, the analysis given in the previ-
ous section can also be applied to the cases of large and
small light wavelengths. We illustrate in Fig. 3 the depen-
dences of j, jsp, and jorb on � in the case where a=200 nm.
As seen, when the light wavelength is large, j and jsp ap-
proach their maximum value �, but jorb tends to zero. Fur-
thermore, jorb reaches a peak value of about 0.25� at �
�768 nm. When the light wavelength is small, jorb reduces
to zero, and j and jsp tend to have the same value � /n1

2. Note
that n1 varies with �.

The above calculations were based on the Abraham ex-
pression for the momentum of light. According to this ex-
pression, the angular momentum of a circularly polarized
photon in a dielectric medium with the refractive index n1 is
� /n1

2, smaller than the vacuum value � by the factor n1
2. In

the case of a guided mode, each photon is spread both inside
and outside the fiber. The characteristic size of the outside
part is given by the penetration length of the evanescent
wave. It reduces with increasing fiber radius or decreasing
light wavelength. This explains why the Abraham angular

FIG. 3. Total �solid line�, spin �dashed line�, and orbital �dashed-
dotted line� angular momenta per photon in a circularly polarized
fundamental mode as functions of the light wavelength. The limit-
ing function � /n1

2 is shown by the dotted line. The fiber radius is
a=200 nm. The calculations are based on the Abraham expression
for the momentum of light.
momentum j of a photon in the guided mode reduces with

-5



KIEN, BALYKIN, AND HAKUTA PHYSICAL REVIEW A 73, 053823 �2006�
increasing fiber radius a �see the solid line in Fig. 2� or
decreasing light wavelength � �see the solid line in Fig. 3�.

According to the Minkowski expression, the angular mo-
mentum of a photon in a dielectric medium is the same as in
free space �22�. Although this result was established by ray
optics for the field in a semi-infinite dielectric medium, we
expect that it remains valid for the field in a guided mode. To
check this fact, we plot in Fig. 4 the Minkowski angular
momentum j�M� as a function of the fiber radius and the light
wavelength. In addition, we also plot the spin component
jsp
�M� and the orbital component jorb

�M�. The solid lines in the
figure confirm that the total Minkowski angular momentum
j�M� remains constant and equal to �. The dashed lines show
that the spin component jsp

�M� reaches its maximum value � in
the limits of large and small radii or, equivalently, the limits
of small and large wavelengths. The dashed-dotted lines
show that, for intermediate radii of the fiber or intermediate
wavelengths of the light, a substantial orbital component jorb

�M�

appears, which is absent in the limits mentioned above. Simi-
lar to the Abraham orbital component jorb, the Minkowski
orbital component jorb

�M� has a peak in the region where the
fiber radius a is about one-fourth of the light wavelength �.
However, the peak value of jorb

�M� is about 0.18�, smaller than
the peak value of about 0.25� of jorb.

To see the difference between the Abraham and
Minkowski angular momenta of a guided light field, we plot
in Fig. 5 both types of momenta as well as their spin and
orbital components as functions of the fiber radius. Figures
5�a� and 5�b� show that j� j�M� and jsp� jsp

�M�, respectively.

However, Fig. 5�c� shows that jorb� jorb
�M�. We note that one-

half of the difference between the Minkowski and Abraham
expressions is sometimes interpreted as the mechanical con-
tribution to the momentum per photon in the field-plus-
matter wave �21,22�. Using such an interpretation, we can
say that the mechanical contribution to the orbital component
�given by �jorb

�M�− jorb� /2� is negative while the one for the
spin component �given by �jsp

�M�− jsp� /2� and the one for the
�M�

FIG. 4. Calculations from the Minkowski expressions for the
total �solid line�, spin �dashed line�, and orbital �dashed-dotted line�
angular momenta as functions of �a� the fiber radius and �b� the
light wavelength.
total angular momentum �given by �j − j� /2� are positive.

053823
V. SUMMARY

In conclusion, we have shown that light confined in a
circularly polarized fundamental mode of a nanofiber has a
finite angular momentum, with both spin and orbital compo-
nents. Using exact solutions of the Maxwell equations for
guided modes, we have derived exact analytical expressions
for the angular momentum and its spin and orbital compo-
nents.

We have shown that, in the thin-fiber limit, the Abraham
expression for the angular momentum per photon approaches
the usual vacuum value �, while in the thick-fiber limit it
gives the field-only contribution � /n1

2 to the angular momen-
tum of a wave traveling into a dielectric medium. Mean-
while, the Minkowski expression for the angular momentum
per photon in the field-plus-matter wave remains constant
and equal to � for all fiber radii.

We have found that the spin component is dominant when
the fiber radius is small or large compared to the light wave-
length. For intermediate fiber radii, a substantial orbital com-
ponent appears, which is absent in the two limits mentioned
above. The orbital component reaches its maximum value of
about 0.25�, according to the Abraham expression, or 0.18�,
according to the Minkowski expression, when the fiber ra-
dius a is about one-fourth of the light wavelength �. By
comparing the Abraham and Minkowski expressions, we
have found that the mechanical contribution to the orbital
part is negative while the mechanical contributions to the
spin part and the total angular momentum are positive.

The angular momentum of a light field can be transferred
to an atom through the atom-field interaction �3,4�. Such a
transfer can influence not only the internal state but also the
rotational motion of the atom. It is known that the action of
a light beam with a spin angular momentum on an atom is
different from that of a light beam with an orbital angular
momentum �4�. Since the angular momentum of a circularly
polarized guided field has both spin and orbital components,
the action of the guided field on an atom is complicated.
Unlike the case of light beams in free space, the field in a

FIG. 5. Comparison between the Abraham �solid lines� and
Minkowski �dashed lines� angular momenta per photon of a guided
light field. The light wavelength is �=852 nm.
fiber mode is guided. Therefore, we expect that a nanofiber
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carrying a light field that possesses angular momentum can
be used for manipulating as well as guiding the rotational
motion of atoms. Such issues will be addressed in future
work.

Although our study was performed in the Abraham and
Minkowski formulations for the momentum of light, it can
be easily modified for other formulations. Due to the feasi-

bility and advantages of nanofibers, our work can initiate

�12� V. I. Balykin, K. Hakuta, Fam Le Kien, J. Q. Liang, and M.
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new experiments to test the validities of different formula-
tions for the momentum of light.
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