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Abstract 

This paper considers the channeling of atoms over a hollow tapering waveguide with an evanescent laser light wave 
formed on its inner surface, the frequency detuning of the wave being positive with respect to the atomic absorption line. 
Using inelastic reflection of the atoms from the evanescent light wave and tapering waveguide geometry makes it possible to 

reduce the temperature and increase the phase-space density of the ensemble of atoms being continuously injected into the 
waveguide from a magneto-optical trap by a factor of 105. It is suggested that the waveguide under consideration should be 
used to study the specific features of the quantum propagation of atoms over the waveguide and collective phenomena in 

quantum-mechanical systems of high density (the Bose-Einstein condensate), and also as a bright coherent source of cold 
atoms. 

PACS: 32.8O.Pj 

1. Introduction 

An atom placed in a quasiresonant laser field is acted 
upon by a dipole light pressure force which pulls the atom 
in, or pushes it out of the region of high field intensity, 
depending on the sense of the atomic polarizability at the 

optical frequency. The use of the gradient light pressure 
force is at the root of mirrors for atomic de Broglie waves, 
as well as other optical elements of atomic optics and 
interferometry. such as atomic lenses and various types of 

atomic traps, resonators, and waveguides (see reviews in 
Refs. [l-3]). Two schemes have been suggested and im- 

plemented to date for the channeling of atoms over an 
optical waveguide. The authors of Ref. [4] suggested using 
the fundamental optical mode of a hollow cylindrical 
waveguide containing laser light with a negative frequency 
detuning for the channeling of atoms drawn toward the 
waveguide axis by the gradient force. This proposal was 

successfully realized in Ref. [s]. It was proposed in Ref. 
[6] that use should be made of an evanescent light wave 

I Corresponding author. E-mail: Ils@isan.msk.su. 

inside a hollow cylindrical optical fiber to make a wave- 
guide for atoms. Atoms propagate in such a waveguide 
while reflecting from the evanescent light wave having a 
positive frequency detuning [7]. 

The elastic reflection of atoms from an evanescent light 
wave has been well studied, both theoretically [8,9] and 
experimentally [lo-121. In the case of reflection of atoms 
whose energy level system agrees well with the A-diagram 

(alkali metals), they managed to observe experimentally 
[ 131 the inelastic reflection of atoms predicted in Ref. 1141, 
associated with their spontaneous transitions between hy- 
perfine structure sublevels in the course of interaction with 
the evanescent wave. As demonstrated in Ref. [ 131, an 
atom may lose, in a single reflection event, up to 50% of 
its transverse kinetic energy with a probability of a few 

tens percent. It was suggested using the effect of inelastic 
reflection of atoms to cool and localize atoms in a gravita- 
tion trap [15]. The first attempt to observe reflection 

cooling in a hollow fiber was undertaken by the group at 
the University of Colorado [ 161. In this work, we present a 
full treatment of the atomic phase-space density increase in 

a hollow tapering fiber, which was shortly described in 

Ref. [17], and propose to employ this effect to make a 

bright coherent source of ultracold atoms. 
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The paper is organized as follows: 
In Section 2.1 we consider the channeling and cooling 

of atoms in a plane waveguide and present the analytic 
relationship between the transverse part of the kinetic 
energy of an atomic ensemble and the longitudinal coordi- 
nate. In addition, we describe a computer model and find 
the lowest temperature attainable through this process. The 
question of optimal parameters of the evanescent wave 
laser is discussed, too. In Section 2.2 we consider the 
characteristic features of atomic propagation through a 
cylindrical waveguide. Using as an example a 2D tapering 
fiber (Section 2.31, we show the possibility of phase-space 
density increase in such a fiber and examine the problem 
of its optimal geometry from this point of view. These 
results are used in Section 2.4 to reveal the dependence of 
the phase-space density of an atomic ensemble in a 3D 
tapering hollow fiber and output thermodynamic parame- 
ters of the atomic gas on its longitudinal coordinate. In 
Section 3 we discuss some possible applications of the 
proposed cooling scheme: (a> investigation of the behavior 
of an ensemble of weekly interacting bosons near the point 
of condensation; (b) development of a bright coherent 

source of the de Broglie wave with a characteristic wave- 
length of the order of several tenths of microns (Section 

3.2). 

2. Increasing the phase-space density of an atomic 
ensemble in a hollow waveguide 

2.1. Plane wawguide 

It is convenient to begin by considering the evolution 

of an atomic ensemble in the one-dimensional case, where 
the simple analytical description is possible. Consider the 
behavior of an atom in a plane hollow waveguide formed 
by two parallel dielectric plates (Fig. I) on whose inner 

fiber 

Fig. I. Plane atomic waveguide. The atom channels over the 

waveguide while experiencing elastic and inelastic reflections 

from the evanescent light wave. 

‘0 
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Fig. 2. Energy level diagram of the sodium atom and transitions 

ensuring the cooling of the atom upon reflection. 

surfaces evanescent waves are formed with a positive 

frequency detuning for the transition between the lower 
hyperfine structure sublevel 1 F = I ) and the excited state 
IP) of the sodium atom (Fig. 2). Assume that the wave- 
guide is filled with light whose frequency is tuned to 

resonate with the transition 1 F = 2) c) 1 P > (‘ ‘repumping” 
light). The evanescent waves provide for the reflection of 
the atom in the course of being channeled over the wave- 
guide. This reflection may be either elastic (the atom 
remains in the state 1 F = I )) or inelastic (the atom moves 

to the state (F = 2) ). An atom in the state 1 F = 2) residing 
outside the evanescent waves is moved back to the sub- 

level (F = I > by the repumping light. 
Let the initial atomic velocity projection onto the wave- 

guide axis be positive, and the transverse atomic velocity 
be other than zero. In that case, the atom will start to be 
channeled over the waveguide, while undergoing reflec- 

tions from the evanescent waves. The average reduction of 
the transverse energy of the atom in a single reflection 
event is [ 151 

2 &ws AsfAT 
=-_- ---_(I --4)UIE,. 

3 6+&s h8 
(1) 

where U, and UZ are the space-dependent light-induced 
shifts of the sublevels (F = I > and ) F = 2) in the evanes- 

cent wave, respectively, r,2 is the rate of the transition 
from 1 F = I ) to (F = 2). L is the characteristic depth of 
penetration of the evanescent wave into the vacuum, 4 is 

the factor allowing for the atomic degeneracy in the angu- 
lar momentum projection, r is the natural linewidth, 6 is 
the detuning of the laser frequency from the frequency of 
the transition 1 F = I > e 1 P), SHFS is the hyperfine split- 
ting, M is the mass of the atom, and uI is its transverse 
velocity. The average rate at which the atomic energy 
decreases in the waveguide is governed by its change in a 



single reflection event and the time between two consecu- 
tive reflection events, At = d/u I Dividing both sides of 
Eq. (1) by At, we get the following expression for the 
average atomic energy reduction rate: 

(A,?,) 2 6,,, il r 2E: 
p= _____--- 

At 3 ?i,,, + 6 d 8 fi 
(2) 

Replacing in the above expression the ratio between the 
finite differences by the appropriate derivative, we obtain a 
differential equation for the rate of extraction from the 
transverse kinetic energy component E, of the atom in 
the course of its being channeled over the waveguide: 

(3) 

Having solved this equation subject to the initial condition 

E,(O)=E.“> we get the relationship between the energy 

E, and the channeling time of the atom in the waveguide: 

Considering that the longitudinal atomic velocity u; = const 
and ; = u:t, we may recast Eq. (4) in the form 

I 
E,(z) = 

C/u,+ l/E,,,’ 

Eq. (5) holds true when the transverse kinetic energy of the 
atom is much higher than its recoil energy. Failure to allow 
for the recoil momentum leads to a wrong relationship 

E, f :) at large ; values: 

E,(z) -+ 0. 

To reveal the behavior of the function E I ( 2) at small 
transverse kinetic energy values, we numerically integrated 
the equations of motion of the atom in the waveguide: 

M?= -VU,,2.3(r) +1(r). (6) 

where U ,,2,3(r) is the potential energy of the atom in one 

of the “dressed“ states [IS] II), 12). or (3) corresponding 

to the levels IF= 1). IF= 2). or (P): 

U,(r) = i(Y,‘+ +0:(r) - 8). Pa) 

U?(r) = t(j(S+ SHFS)?+ -i_fli(r) - fi), (7b) 

U,(r) = - p(\i,‘+ +0:(r) - 8). (7cJ 

f(t) is the term allowing for the change in the momentum 

of the atom upon a change in its quantum state, and f& in 
Eqs. (7a)-(7c) is the Rabi frequency. When the atoms are 
channeled over a waveguide formed by an evanescent light 

wave with a positive frequency detuning, some of them 

may be lost as a result of, first, spontaneous decays and 

secondly subbarrier channeling. Both of these loss mecha- 
nisms were taken into account in our model by excluding 
from further consideration those atoms which reached the 
surface of the dielectric in the course of reflection. The 
validity of such an approach will be discussed below. 

To allow for momentum diffusion and other effects 
associated with changes in the quantum state of the atom 
during its motion, use was made of the Monte Carlo 

random process modeling technique. At each numerical 
integration step, we computed the probability of the transi- 
tion 1 F = I> + (F = 2) and then compared it with a ran- 
dom quantity of the same density of distribution on the 
interval [O,l] and changed the quantum state of the atom or 
not, as was appropriate. The presence of the “repumping” 
laser radiation was taken into consideration as follows. All 
the atoms residing in the state (F = 2) at a distance 
exceeding a few A from the dielectric surface were moved 

to the state ]F = 1). The change in the state of the atom 
was attended by the recoil momentum prec of four photons 
on average being imparted to it [ 151, 

where ,+ is the wavelength of the spontaneously emitted 

photon and 5 is a random unit vector. 
To allow for tunneling, we computed for each event of 

reflection from the evanescent wave the probability ptun 
that the atom will tunnel through the potential barrier 

produced by the wave [19]: 

1 
P =- 

tun 
1 +ezD’ 

D= 1 A (I&,, -uy 
2rr A %coil”l max ’ 

(9) 

where V,ecoil is the recoil velocity of the atom and uL ,naX 

is the maximum classical atomic velocity at which it still 
can reflect from the evanescent wave. As demonstrated in 
Ref. [h], the correction to ptun introduced by the interac- 
tion between the polarized atom and the dielectric surface 
is small, the parameters in hand being what they are. so 
that the lifetime of the atom in the waveguide is reduced 

by a mere 10%. But this decrease can be compensated by 
increasing the laser intensity. We therefore disregarded this 

effect. An atom was assumed to have either settled on the 
waveguide wall and left the ensemble or reflected success- 
fully, depending on the relationship between or,, and a 
random quantity of the same density of distribution on the 
interval [O,l]. Both of the main mechanisms responsible 
for the loss of atoms were thus taken into account in our 

model. 
As was experimentally observed in Ref. [20], the reflec- 

tion cooling of sodium atoms in an evanescent wave has 
the highest efficiency if the laser detuning is approxi- 

mately equal to the Rabi frequency fJR(rtum,ng) at the 
turning point of the atomic trajectory. In the case of an 
incident sodium atom with an average velocity of 50 cm/s 
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the maximum rate of reflection cooling is achieved at a 
detuning of 6 = 100 MHz. The frequency OnR(r~urf._J is 
chosen to be 500 MHz, i.e. the height of the light potential 
barrier is greater than the average kinetic energy of the 
incident atom by a factor of 20. All the numerical results 
presented in the paper were obtained using this laser light 
parameters. 

The modeling results are presented in Fig. 3. The 
squares show the computed mean absolute transverse 
atomic velocity values. The solid line is the result of a 
parametric adjustment by means of functions of the form 

B 
UI(Z)=Uim,“+- 

1 +Az’ 

with the parameters ulmin, A, and B. The parameter 
uI min has the meaning of the ultimate transverse velocity 
whereto the mean transverse velocity of the atomic ensem- 
ble tends in a plane waveguide. The quantity u I min deter- 
mined the minimum temperature to which an atomic en- 
semble can be cooled in such a system. Expression (5) 
describes quite well the change of energy of an atom down 
to a value comparable with its recoil energy, but E,(r) 

+ ELmin f 0. In the case under consideration, E, m,n is 
,ZX 
of the same order of magnitude as the kinetic atomic 
energy corresponding to three recoil momenta (u L min P IO 
cm/s). 

2.2. Cylindrical fiber 

Let us now analyze by means of the above-described 
method the evolution of an atomic ensemble in a horizon- 
tal hollow cylindrical waveguide with an inside diameter 
of d = 10 pm and a length of L = 0.8 cm, which is shown 
schematically in Fig. 4, along with a typical trajectory of 
an atom therein. The initial conditions for the atomic 

0 0 02 04 06 0.8 IO 

2; cm 

Fig. 3. Average transverse velocity component of atoms propagat- 

ing over a plane waveguide as a function of the longitudinal 

coordinate. The squares indicate computer modeling results, and 

the solid line is the result of a parametric adjustment by means of 

fractional rational functions vI --) 7 cm/s. 

Fig. 4. Hollow cylindrical waveguide and a typical trajectory of an 

atom therein. Because the atom gradually loses its transverse 

kinetic energy component in the course of channeling over the 

waveguide, its trajectory clings closer and closer to the evanescent 

wave. 

velocities and coordinates were selected as follows. The 
atoms were placed in the plane XOY at the beginning of 
the waveguide (see Fig. 4) so that their distribution over 
the cross-section of the waveguide was uniform: the longi- 
tudinal velocity u. was equal to 50 cm/s for all atoms, 
and their distribudon over the radial and azimuthal veloc- 
ity components corresponded to a thermal distribution with 
a mean velocity of 50 cm/s. The atoms channel over the 
waveguide while experiencing numerous reflections from 
the evanescent wave. Some of them (around 30%) are of 
inelastic character and lead to a reduction of the radial 
atomic velocity component, its azimuthal counterpart re- 
maining unchanged. As can be seen from Fig. 4, this 
causes the atomic trajectory to cling closer and closer to 
the evanescent wave, so that the atom eventually starts 
“rolling” over the wave. Note that this effect stops the 
atomic cooling process. It is apparently exactly this fact 
that prevented the authors of Ref. [16] from actually 
observing cooling of atoms in a cylinder waveguide. For 
this reason, the radial distribution of the atoms at the exit 
of the waveguide features a sharp peak near the surface of 
the dielectric (Fig. 5). One can also see from Fig. 5 that 
the radial atomic distribution at the exit of the cylindrical 
waveguide has narrowed perceptibly (approximately by a 
factor of 5). 

Figs. 6a, 6b present the initial and final atomic distribu- 
tions over the absolute radial and azimuthal velocity com- 
ponents in the cylindrical waveguide. A substantial (five- 
fold) cooling of the radial atomic velocity component as a 
result of inelastic reflections from the evanescent wave is 
evident from Fig. 6a. With the waveguide being 0.8 cm 
long, an atom undergoes some 30 reflections from the 
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r/R 
Fig. 5. Spatial distributions of atoms over the radius of a cylindri- 

cal waveguide at the entrance ( ; = 0) and exit (; = 0.8 cm). The 

initial atomic distribution, uniform over the entrance cross section 

of the waveguide, transforms into a distribution with a pronounced 

peak near the waveguide wall. The width of the exit distribution is 

approximately one-fifth of the entrance distribution. 

evanescent wave. In that case, as follows from the curve of 
Fig. 3, a thermal equilibrium is established between the 
evanescent wave and the transverse atomic degree of 
freedom at a temperature of T E 8 X 10e6 K. The insignif- 
icant narrowing of the azimuthal velocity distribution (Fig. 

6b) is explained by the coupling between the radial and 
azimuthal degrees of freedom due to the gravity force that 

disturbs the cylindrical symmetry. The extent of this cou- 
pling is determined by the parameter (Y = 1I4gd/E~,,,~, 
which in our case is equal to about IO-‘. 

Fig. 7 shows the mean absolute radial atomic velocity 

as a function of the longitudinal coordinate : in the same 

way as Fig. 3 does for the case of a plane waveguide. In 
the case of cylindrical waveguide symmetry, the cooling 
limit of the transverse atomic velocity component is 7 
cm/s. As can be seen, the characteristic waveguide length 
at which this limit is reached amounts to about 0.5 cm, 

which is somewhat less than in the case of a plane 
waveguide. The substantial narrowing of the radial spatial 
and velocity distributions in the cylindrical waveguide 
points to a principal possibility of using such schemes to 

increase the phase-space density of an atomic ensemble. 

2.3. 20 hornjiher 

The narrowing of the velocity and spatial distributions 

of atoms in an ensemble in the course of their channeling 

over a cylindrical waveguide points to the possibility of 
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Fig. 6. (a) Absolute radial and (b) azimuthal velocity distributions 

of atoms at the entrance and exit of a cylindrical waveguide. The 

initial transverse and azimuthal atomic velocity distributions are 

of Maxwell type with a temperature of k,T = h r (Doppler 

cooling limit) and the initial longitudinal atomic velocity distribu- 

tion is of &type. (a) The exit atomic distribution has its average 

velocity corresponding to two recoil momenta approximately, 

which is around one-fifth the initial atomic velocity. (b) The 

azimuthal distribution has slightly narrowed because of the gravity 

force disturbing the axial symmetry and coupling together the 

radial and azimuthal degrees of freedom. 
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Fig. 7. Average transverse velocity component of atoms propagat- 
ing over a cylindrical waveguide as a function of the coordinate ;. 

The squares indicate computer modeling results, and the solid line 

is the result of a parametric adjustment by means of fractional 

rational functions u I + 7 cm/s. 
r-+x 

using this effect to increase the atomic phase-space den- 

sity. Consider for simplicity a two-dimensional curved 
tapering waveguide formed by two dielectric surfaces 
whose cross-sections at planes parallel to the plane YOZ 
are hyperbolas: 

A 
x(z)= y- +B,,,~+C,,2. 

,,22 + 1 
(11) 

where A,,,, B,.,, C,,2 and k,,, are parameters. Each of the 
hyperbolas has an asymptote forming some angle with the 
OZ-axis. The hyperbolas form a tapering two-dimensional 
hollow waveguide which at great ; values can be well 

approximated by a cone with an apex angle of cr (the taper 
angle of the waveguide) inclined at an angle of /3 with 
respect to the horizontal. The treatment of the two-dimen- 
sional problem takes a substantially less computer time 
and gives an understanding of the physical phenomena 
occurring in the 3D system at various parameters. Fig. 8 
shows the 2D hornfiber and various types of atomic trajec- 
tories in it. We analyzed a waveguide with an entrance 
aperture diameter of 500 pm and an exit aperture diameter 
of 10 pm. Atoms at the initial instant of time were placed 
near the origin of the coordinates in the waveguide cavity 
and were imparted some initial velocity directed inside the 
waveguide. The absolute value of the velocity obeyed a 
thermal distribution with a mean value of 50 cm/s. The 
atoms channeled over the waveguide while undergoing 
numerous reflections from the evanescent wave. Because 
of the tapering of the waveguide and the effect of the 
gravity force, the atomic velocity projection onto the local 
waveguide axis varied in the course of channeling. The 
contributions from these two factors in the given wave- 

guide geometry are opposite to each other. If there had 
been no dissipation in the system, an atom in the wave- 
guide would have been observed to execute undamped 
oscillations with some frequency and a mean amplitude 
corresponding to its initial kinetic energy by the virial 
theorem. 

The presence of a mechanism by which an atom in the 

waveguide loses some of its kinetic energy in inelastic 
reflections from the evanescent light wave causes the 
equilibrium position of the atom to move gradually down- 

ward. Depending on the relationship between the dissipa- 
tion rate and the natural oscillation frequency of the atom, 
the system exhibits one of the following two modes of 
behavior typical for linear oscillatory systems: (i) oscilla- 
tions damping over many periods of oscillation (see Fig. 8) 
and (ii) an exponential decay of the initial energy without 
oscillations. Fig. 8 also presents the trajectory of an atom 

Fig. 8. Trajectories of atoms in a 2D hornfiber. I - damped oscillations; 2 - death through tunneling; 3 - strongly damped oscillations. 
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which has tunneled through the potential barrier formed by 
the evanescent light wave and “settled” on the waveguide 
wall. This fact is marked by a tombstone. One can also see 
from this figure that the density of the atomic trajectories 
increases as the waveguide narrows down, which means 
that the atomic phase-space density becomes higher. The 
oscillation free mode of channeling was found to be 
optimal to achieve the coldest possible output atomic 
ensemble at the fixed evanescent wave parameters and 

fiber length. This mode was realized by variation of the 
apex and the inclination angles ((Y and p respectively). 
We have estimated that the mean velocity of the atomic 
ensemble along the axis of the fiber was constantly de- 
creasing provided that p = 27’ and (Y = 0.7”. These condi- 

tions are optimal for the proper coupling of the transverse 

and longitudinal velocities in the gravitational field and 
provides for the reduction of the average atomic velocity 
to the lowest output value of 11 cm/s. 

Fig. 9 shows the relative change of the averaged over 
the cross-section atomic phase-space density, ~ph/~ph,,. in 
the two-dimensional waveguide under consideration as a 
function of the coordinate ;. The substantial rise of the 
phase-space density is due to narrowing of the spatial and 

velocity distributions of the atomic ensemble (the tapering 
of the waveguide and the cooling of the atoms) and also 
the accumulation of atoms in the narrow part of the 

waveguide. 

2.4. 30 hornjiber 

Consider now the behavior of an atomic ensemble in a 
hollow three-dimensional tapering curved waveguide 

10.‘1 ’ ’ ’ ’ 1 ’ 
co 01 02 03 04 05 0.6 

2: cm 

Fig. 9. Increase of the phase-space density of an atomic ensemble 

in a hollow 2D homfiber. The increase is due to dissipative 

reflections of the atoms from the evanescent wave and the taper- 

ing waveguide geometry. 

evanescent 

~_ / 

wave 

atom 
. . d waveguide 

-: ( 4, L 

Fig. 10. Illustration of the use of a 3D homfiber as a coherent 

source of de Broglie waves. Atoms are injected continuously from 

a magneto-optical trap into a hollow waveguide with an evanes- 

cent light wave formed on its inside surface with a positive 

frequency detuning with respect to the atomic absorption line. The 

atoms channel over the waveguide while undergoing reflections 

from the evanescent wave, some of which entail a reduction of the 

kinetic energy of the atoms. This causes the spatial and velocity 

distributions of the atomic ensemble to narrow. i.e., increases its 

coherence. 

shown schematically in Fig. 10, along with a cloud of 
atoms confined in a magneto-optical trap (MOT). In this 
case we use the following parameters of evanescent light 

wave: L!a(rsur& = 500 MHz, 8 = 100 MHz. The cross- 
section of the 3D homfiber by the X2-plane is the 2D 
hornfiber defined previously. The channeling of atoms 

over such a waveguide may be due to their repeated 
reflections from an evanescent light wave. Assume that 
atoms are being continuously injected from a magneto- 
optical trap into the waveguide cavity and their velocity 
distribution corresponds to a Maxwell one with a tempera- 
ture of T= hT/k, (k, being the Boltzmann constant) 
that can easily be attained in the trap. The entrance inside 

diameter of the waveguide corresponds to the characteris- 
tic size of the cloud of atoms in the trap and amounts to 
500 pm. The diameter of the exit waveguide aperture is 10 
km. We computed the averaged over the cross-section 
phase-space density of the atomic trajectories in several 
planes parallel to the YOX plane. Fig. 11 presents the 

phase-space density normalized to its initial value 

Pph( ZVP,,ll as a function of the coordinate ;. One can see 



that while the atoms channel in the waveguide over a 
distance of L z 1 cm, their phase-space density is in- 
creased by five orders of magnitude. The larger increase 
(by more than two orders of magnitude) of the phase-space 
density in comparison with that in the case of a two-di- 
mensional waveguide is explained by the additional nar- 
rowing of the spatial distribution and the longer lifetime of 
the atoms, which in the three-dimensional waveguide is 
about I second. Note that the total probability that a single 
atom will be lost in the 3D-hornfiber is of the order of 
10-9. 

The average transverse atomic velocity in the ensemble 
at the exit of the waveguide amounts to about 10 cm/s, 
while the mean absolute velocity is around 20 cm/s. 
However, at the expected high densities of atoms in such a 
waveguide equalization of their kinetic energy distribu- 
tions among all their degrees of freedom will take place 
because of collisions and long channeling time. Therefore, 

one might expect that the average atomic velocity will be 
around 10 cm/s, which corresponds to an ensemble tem- 
perature of T= 1.5 X 10e5 K. As will be demonstrated 
below, reaching such a low temperature at atomic densities 

of the order of 10’J-10’5 cm-j makes quantum statistics 
peculiarities to manifest themselves in the atomic system. 

‘05i^-‘-:‘05 
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Fig. 11. Phase-space density of an atomic ensemble in a 3D 

hollow homfiher as a function of the longitudinal coordinate. The 

narrowing of the spatial atomic distributions over the two coordi- 

nates by a factor of 50 approximately and the five-fold reduction 

of the width of the absolute atomic velocity distribution raises the 

phase-space density of the ensemble by five orders of magnitude. 

As in the two-dimensional case, this occurs thanks to the presence 

of dissipation in the system and the tapering geometry of the 

waveguide. 

3. Results and discussion 

The achievement of an extremely cold and dense en- 
semble of weekly interacting bosons gives an opportunity 
to use the proposed device for investigating quantum 
statistics phenomena and the wave propagation of matter. 
Consider a tapering waveguide terminating in a horizontal 
section of a cylindrical waveguide with an inside diameter 
of 4 km. Assume that while channeling over it, an atom 
undergoes no spontaneous decays (there occur only elastic 
reflections of slow atoms from the evanescent wave with 
its frequency detuned far from resonance). Accordingly, 
there is no “repumping” laser light. Insofar as the temper- 
ature of the atomic ensemble is low, we assume that the 
probability of three-particle collisions is also low. Conse- 
quently, the Na, molecules can be disregarded. 

3.1. Bose-Einstein condensate? 

If the phase-space density of noninteracting bosons in 
an external potential exceeds a certain value governed by 
the form of the potential, a perceptible proportion of the 
particles in the ensemble will reside at the lowest energy 
level. This phenomenon, known as the Bose-Einstein 
condensation, gives rise to some interesting physical prop- 
erties of the ensemble, associated with the high degree of 
coherence of the wave functions of individual atoms. A 

Bose-Einstein condensate is formed when the average 
distance between the particles in the ensemble becomes 

commensurable with the de Broglie wavelength. 
Let us reveal the population pattern of the atomic 

waveguide modes. To this end, we use the results of Ref. 
[6] which presents an approximate equation for the radial- 
rotational energy levels of atoms propagating in a quantum 
fashion over a hollow cylindrical waveguide with an 

evanescent wave in the case where the atomic de Broglie 
wavelength is shorter than the optical wavelength, &a < A 
(we assume that violating this condition affects very little 

the character of the mechanical action of light on the 
atom): 

-(n++)7~. (12) 

Here n, m = 0, 1, . . , are the radial and rotational quan- 
tum numbers, respectively, V,,,,, is the barrier height of the 

evanescent wave, U is a dimensionless parameter charac- 

terizing the penetration depth of the evanescent wave into 
the vacuum, and en = 2fizff ‘/Md’ is an energy of the 
same order of magnitude as the recoil energy. Eq. (12) was 
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numerically solved for E,,,,,,. In the system in hand, there is 
no longitudinal coordinate dependence, and so, for the 
sake of simplicity, let us examine a cylindrical waveguide 
section of fixed length f. = d, assuming that the atomic 
wave functions go to zero at its ends (“blank” walls). 
Obviously the choice of the value of L is arbitrary and is 
only required to satisfy the condition L Z+ A,,, for if the 
de Broglie wavelength A,, and the characteristic distance 
between the particles are much smaller than the size of the 
optical cavity, the physical properties of the ensemble of 
particles will be governed by its temperature and density 
and will depend weakly on the cavity geometry. The total 
kinetic energy of an atom in the waveguide is the sum of 
the total energies of the radial-rotational and translational 
atomic motions: 

E n.rrr./ = E,, ,,,, + E, = E,, ,,), + = 
8ML2 ’ (13) 

where 1 = I, 2. , is the translational quantum number 
characterizing the motion of the atom along the waveguide 
[l9]. Let 10% of the total number of atoms confined in the 
magneto-optical trap, NMoT = 10” atoms [2l], enter the 
waveguide cavity every second, this corresponds to an 
atomic flow of ji, = IO’ atoms/s. Inasmuch as the flow j 

remains approximately constant (the loss of atoms is low), 
the density of the atomic ensemble in the cylindrical part 
of the waveguide is p =,j/uS = 4jr/nL.d’ z IO” cme3, 

where u is the velocity of the collective motion of the 
atoms along the waveguide. The distribution of the atoms 

among the waveguide energy levels El,,,,,., is defined by 
the Bose function 

f,.,,,,(E)= [exp( ““lizp/ -I]‘. (14) 

where p is the chemical potential of the system depending 
on the number of particles, N = p(rrd2/4)L, and the 

temperature T, which we found numerically from the 

normalization equation 

c fad 6, .>)I .I ) = N. (15) 
r,,rn.l 

Fig. I2 presents the relative population G = N,/N of 

the minimum-energy mode of the waveguide as a function 

of the number of particles in the magneto-optical trap, 
N Mo-r, where N,, is the number of atoms in the fundamen- 
tal waveguide mode. One can see that at a certain number 
density of the particles, reached with realistic NMoT val- 

ues, there occurs a sharp increase in the proportion of 
atoms in the fundamental waveguide mode. The system 
parameters being what they are, the relative population of 
the fundamental mode amounts to a few percent, which 
may impart the ensemble some new properties typical of a 

Bose-Einstein condensate. Note, however, the existence of 

numerous factors capable of preventing the attainment of 

sufficiently high particle densities and the formation of a 

p (cms3) 
10x10'~ 1 5x10'5 20x10'" 2 5x1P1 30x10'5 

I / I 
I , 7 

I 

I I I 
12x105 1.8X109 24x10' 30x105 36x109 

NMOT 

Fig. 12. Relative population of the fundamental mode of a cylin- 

drical waveguide with a diameter of d = 4 km, in which a 3D 

homfiber terminates. as a function of the number of atoms con- 

fined in a magneto-optical trap, of which 10% are being injected 

every second into the hornfiber. The concentration of atoms in the 

waveguide is plotted on the top X-axis. Attaining a fundamental- 

mode population at a level of a few percent will enable one to 

study quantum statistics speciftcs for bosons, and use the scheme 

suggested as a bright coherent source of de Broglie waves. 

Bose-Einstein condensate. These include the already noted 
three-particle collisions giving rise to the Na, molecules, 

interatomic collisions in the evanescent light wave leading 
to the 1 F = I) ++ IF = 2) transitions, and excitation by 

diffuse light. 

3.2. Bright coherent source of de Broglie waves 

The proposed device can be used as a very bright 
source of ultracold atoms. The output atomic flux is equal 

to the input one because of loss of atoms propagating 
through the fiber can be made as small as desired. The 
average velocity (u) of the atomic output beam is IO 

cm/s, the corresponding de Broglie wavelength of the 
atoms is A,, = 0.2 p,m. The divergence of the atomic 
beam issuing from the waveguide is determined by its 
transverse temperature and is about 7r/2 rad. In the case 

the initial flux is IO9 atoms/s, the brightness of the output 
beam B =j,,,/2 (Y z 3 X 10’ atoms/s . sr. 

Since a perceptible proportion of atoms in the output 
section of the waveguide are in one and the same quantum 
state, such a waveguide can be viewed as a coherent 
source of de Broglie waves. Let us estimate the main 
parameters of the source suggested. The coherent output 
flow of atoms in the lowest energy mode is j$’ = ji,G = 4 
X IO7 atoms/s and its divergence is determined by 

diffraction. Creating a coherent source of such high bright- 
ness will make possible many interference experiments on 

atomic optics. 
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Note also that by using the method suggested, one can 
drive a classical atomic ensemble at a temperature and 
particle density typical of a magneto-optical trap to a 
quantum state with a high degree of coherence. This will 
make it possible to study the specific features of the 
quantum mode of propagation of atoms over the wave- 
guide, particularly the character of the mechanical action 
of light on atoms whose de Broglie wavelength is com- 
mensurable with the optical wavelength. Reaching high 
particle densities in the system will enable one to reveal 
the molecule formation dynamics at very low tempera- 
tures. 

One of the important problems that the experimentist is 

faced with in implementing the source suggested is the 
extraction of the atomic beam from the waveguide. While 
overlapping and interacting with the atomic beam, the laser 
beam producing the evanescent wave may substantially 
impair the coherence of the atomic ensemble. One way to 
solve this problem is to make the waveguide terminate in a 

greatly diverging funnel, so that the light beam emerges 
within a hide-angle cone, and use a diaphragm to separate 
the light of the atomic beam from each other. Another 
possible method is to suppress the evanescent wave in the 
exit section of the waveguide cooled to a temperature close 
to that of liquid helium by applying an antireflection or 
absorbing coating onto the outer surface of the waveguide. 
In that case, ultracold atoms will traverse this short wave- 

guide section without suffering any dramatic heating and 
retaining their coherence, for the energy exchange between 
the phonon quantum system of the dielectric and the atom 
with de Broglie wavelength much in excess of the charac- 
teristic atom dielectric interaction length is of very low 

probability. 
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