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Abstract 

We consider the reflection of electrons by an evanescent wave formed due to the total internal reflection of ultrashort 
laser pulses from a dielectric-vacuum interface. It is shown that a small value of the cross-section for interaction of electrons 
with the laser beam can be compensated for by a high intensity of the femtosecond laser pulses. Numerical estimation shows 
that the duration of the reflected electron pulses may be as short as 100 fs. 

1. Introduction 

In 1933, Kapitza and Dirac [ll suggested the use 
of a standing light wave for the purpose of reflecting 
electrons due to stimulated Compton scattering. Since 
the cross-section for the process was rather small the 
effect became experimentally observable only after a 
high-power laser had appeared [2]. The quasi-reso- 
nance interaction of laser light with an atom has a 
much greater cross-section, and it was proposed to 
utilize this effect to observe the channeling (1-D 
trapping) of atoms in a standing light wave [3]. The 
advent of tunable lasers made it possible to observe a 
large number of such effects, nowadays referred to 
as “atom optics in laser light” [4-61. But on the 
other hand, the development of quantum electronics 
led to the production of extremely intense femtosec- 

ond laser pulses [7,8] with such a high photon den- 
sity that the small value of the cross-section for 
electrons interacting with light can now be compen- 

sated for by the high intensity of laser light. More- 
over, extensive studies of electrons interacting with a 
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highly intense light field have been done in recent 

years (see for review [9] and recent experimental 
work [lo]). Naturally it now becomes possible to 
turn back to the problem of “electron optics” with 

laser light. Though the control of the motion of 
charged particles by electromagnetic fields has 

reached a high degree of performance, the specific 
features of the laser light (high intensity, short pulse 
duration, high concentration in a small region of 
space) open up some new possibilities. In particular, 
it has been recently proposed to use femtosecond 
laser pulses for focusing of low-energy electrons 
[l 11. In this work, we examine the possibility of 
reflection of electrons by an evanescent light wave 
of high intensity and femtosecond duration. 

2. Equations of motion 

To describe the relativistic motion of an electron 
in the light field we make use of the Minkowski 
equation [ 121 

mzi” =f”, (1) 

where m is the electron rest mass, (Y = 0, 1, 2, 3; 
li” = du*/dT, Us is the four-velocity satisfying the 
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scalar equation U~U, = c2, T is the proper time and 
f* is the force four-vector. For an electron moving 
in an external electromagnetic field the force four- 

vector is 

f” = ( e/c) F@Us, (2) 

where F Op is the electromagnetic field tensor 

F”e = aaAe - aDAa, 

FaP = 3, A, - 3s A,, (3) 

A” = (cp, A) is the four-vector potential, and covari- 

ant and contravariant components of the four-gradi- 

ent are determined as usual, 

a,-a/axa= fi,v , 
( 1 

aa=a/axa= fi,-v . 
( 1 

To analyze the motion of an electron in a high- 
frequency electromagnetic field it is convenient to 
rewrite the equation of motion (1) in terms of the 
canonical momentum [ 13,141: 

(4) 

The solution of Eq. (4) (or equivalent Eq. (1)) can be 
found as a series of solutions if we consider the 
quantity eA,/mc2 as a small expansion parameter 
and take the constant four-velocity LP = ~0” as a 
zero-order solution. For a harmonic electromagnetic 
field of the form A = a exp(i wt) the equation of 
motion averaged over the field wavelength is re- 
duced to the equation [ 141 

$(u.)= -(~)2(ABga,)=+30p2. (5a) 

where pz is a scalar function, 

2 

(E2>h. (5b) 

Eqs. (5a) and (5b) will be further used to analyze the 
motion of electrons in ultrashort pulses of laser light. 

3. Electra-optical analogy. Refractive index of an 
electron beam in a laser wave 

The classical optics is based on the Maxwell 
equations wherein the electromagnetic field compo- 

nents satisfy the wave equation [ 151 

AE- 
n2(r, 0) a2E 

-= 
C* at2 Op (6) 

where n(r, w) is the refractive index of the medium. 
For a harmonic wave of the form E = Eoeiot, Eq. (6) 
reduces to the homogeneous time-independent equa- 
tion 

AE+k’E=O, (7) 

which is characterized by the sole parameter referred 

to as the propagation constant 

k( r, w) = n( r. co) w/c. (8) 

On the other hand, the motion of a material particle 
in an external field is described by the Schriidinger 

equation, 

aP 
ifix = (9) 

For a particle which is in the energy state with 

energy E = ho and which has a wave function 
+!~(r, t) = I/J(~) exp<-- iwt), the time-independent 
Schriidinger equation is 

AF+$[E-“(r)]P=O. 

In this case the propagation constant can be deter- 
mined as 

k2(r, o) = $[E- V(r)]. (11) 

Comparing between Eqs. (8) and (111, we get the 
following expression for the refractive index for a 

beam of particles in an external field: 

V(r) “2 
n(r, w)= l-- 

[ 1 E(w) . 
( 124 

The expression for the refractive index for a beam of 
electrons propagating in an electromagnetic field may 
be expressed in terms of the field parameter p2 and 
the relative velocity p = u/c: 

n(r,oJ)= l- [ ( $)!G7]“2. ( 12b) 
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It can be seen from Eq. (12b) that the refractive 
index for a beam of electrons moving in a light field 
depends only on two parameters: light intensity and 
velocity, and may differ substantially from unity. 
Insofar as the refractive index is always less than 
unity, electrons are always expelled out of the light 
field region, and when j? 2 < p*, the refractive index 
can become an imaginary quantity thus showing that 
electrons can never penetrate through the field. 

Let us evaluate the laser field parameters for 
which the refractive index for an electron beam can 
differ substantially from unity. To this end, we ex- 
press the dimensionless field parameter p2 in terms 
of the laser power P (continuous-wave radiation) 
and laser pulse energy W = Pr (pulsed radiation): 

$2 L A2P ( 1 7~ mc3 s’ (13) 

where S is the cross-section area of the laser beam, T 
is the duration of the laser pulse and r, is the 
classical electron radius. 

The quadratic relationship between the parameter 
p2 and radiation wavelength allows one to hope that 
powerful CO,-laser radiation (h = 10.6 pm> can 
have a great effect on the motion of electrons. For a 
high-power (P = lo3 W) CW CO,-laser radiation 
focused into a spot with a diameter d = lOA, the 
dimensionless parameter p2 = 7.2 X lo-“, and the 
addition to the refractive index for an electron with 
an energy E = 100 eV in this laser photon field, is 

(Y = i( ~2/p2)/~= 1.8 X 10e6. So small a 
change of the refractive index caused by the radia- 
tion of the CO, laser is too small to have any 
observable effect on the motion of the electron. In 
the case of visible CW lasers, the parameter (Y is 
even smaller. 

The situation with ultrashort laser pulses is differ- 
ent. When using a femtosecond laser with a pulse 
energy W = 10d5 J; pulse duration r= lo-l3 s, and 
a beam diameter d = 10A (these being quite moder- 
ate parameters), the parameter cy becomes about 0.2, 
i.e. the change of the refractive index reaches 20%. 

4. Reflection of electrons by an evanescent wave 

Creating a photon medium with a sufficient re- 
fractive index for electrons offers strong possibilities 

Electron 
Beam 

Fig. 1. Illustration of the reflection of elections by an evanescent 

light wave formed upon the total internal reflection of femtosec- 

ond light pulses from a dielectric-vacuum interface. 

of controlling the motion of electrons in space. The 
focusing of electrons by light was considered in Ref. 
[l 11. Here we will examine the reflection of electrons 
by a laser field. As already noted in the Introduction, 
one possible application of such a reflection is the 
production of femtosecond electron pulses. 

We will consider an actual scheme of reflection of 
electrons by an evanescent laser wave formed due to 
total internal reflection of femtosecond laser pulses 
from a dielectric-vacuum interface (Fig. 1). Such a 
laser field was considered in Refs. [16,17] to effect 
the mirror reflection of atoms (references to the 
latest works on the mirror reflection of atoms can be 
found in Refs. [5,6]). The light intensity distribution 
in the evanescent wave in vacuum may be repre- 
sented in the form [ 151 

I= ~Oe-L/LO, ( 14a) 

where z. = (h/2nXn2 sin2 ~9- 1)‘12 is the charac- 
teristic light field decay length in the z-direction 
normal to the dielectric-vacuum interface, IO is the 
field intensity at the interface, h is the optical wave- 
length, n is the refractive index, and 8 is the radia- 
tion incidence angle at the interface. Accordingly, 
the dimensionless field parameter p2 in the evanes- 
cent wave has the form 

E”* = P;e-L/LO* ( 14b) 

The character of the reflection of electrons from the 
evanescent wave strongly depends on the relation- 
ship between the duration r of the laser pulse and 
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the time of flight of an electron through the laser 
wave, T,,. It may be shown that when the laser pulse 
duration is much longer than the characteristic transit 

time T,~, the character of the reflection of the elec- 
trons is close to a mirror. When the relationship 

between these times is reversed, the mirror-like char- 

acter of the reflection is disturbed. 
Let us make some simple estimates of the laser 

field and electron beam parameters with which the 

reflection of electrons is possible. 

4.1. Case 7 K T,, 

Eq. (5) describing the motion of an electron in an 

electromagnetic field can be substantially simplified 
in the case of not very high velocities ( /l K 1) and 

not very short laser pulses (7~ l/w). The 4-D 
acceleration vector for p -=c 1 is of the order of 
li” = (0, C). Similarly, the 4-D field gradient may be 

represented in the form 

where T = h/c is the light wave period and n is the 
unit vector in the field gradient direction. Hence it 
follows that the spatial field derivative is greater than 

the time field derivative in the same ratio as the laser 
pulse duration is longer than the light wave period. 
Thus, for femtosecond pulses with a duration T = 100 
fs, the time variation of the light intensity can be 
disregarded, so that the electron equation of motion 
(5) is reduced to the simple equation 

d 1 
-v = - 2c2V/L2. 
dt (15) 

In the case under consideration (T -=x T,,), we get 
from Eqs. (14b) and (15) the following expression 
for the variation of the normal electron velocity 

component: 

Au, = -y exp( -Z/Z,)T, (16) 

where y= e2E~/2m2w~h and E, is the field ampli- 
tude at the surface of the dielectric. It can be seen 
that the velocity variation of the electron depends on 
its coordinate at the instant the laser pulse arrives at 
the dielectric surface. Since the angle of reflection of 
the electron is equal to the ratio between its normal 
velocity component v I and the longitudinal velocity 

component v,, , it is clear that this angle is not a 
constant but a variable ranging between the maxi- 

mum value of ‘p,,, = - (y~/v,, ) and zero with the 
incidence angle remaining the same. 

With the laser pulse energy W = lo-’ J, the laser 

spot diameter d = 10A on the dielectric surface, and 
the light frequency v = 5 X lOI s-l, the electron 
velocity variation is Au I = 2 X lo8 exp( - Z/Z,) 
cm/s. This means that an electron beam with an 
energy of E = 100 eV (v = 5.9 X lo8 cm/s) reflects 
at a substantial angle of cp = 0.3 rad from the 

evanescent wave produced by a femtosecond laser 

pulse. 

4.2. Case 7s TV, 

The reflection of electrons should in this case be 
expected when the maximum potential energy of the 

electron in the evanescent wave is higher than its 
kinetic energy associated with its normal motion 

towards the dielectric surface, i.e. U,,, 2 E, . The 

maximum normal velocity component of the re- 

flected electrons is given by 

v;,, = 2 
m 

=4lT - -!& ( ‘C) (17) 

At a laser pulse duration T= lo-l2 s (all the other 

parameters remaining the same) the corresponding 
velocity is vmaX = 6 X lo7 cm/s, i.e., as one would 
expect, it is lower than in the case 7-C TV,. 

5. Computer simulation 

With the electron beam and laser pulse parameters 
being realistic, a perceptible reflection of electrons 
occurs when the time it takes for an electron to 
traverse the evanescent wave is comparable with the 
laser pulse duration. We have carried out the com- 
puter-aided modeling of the reflection of electrons in 
this case, based on the numerical solution of the 
equation of motion (15). 

The computational model assumes that the laser 
and the electron pulse intersect on the surface of the 
dielectric. The laser field produces a repulsive poten- 
tial for the electrons approaching the surface. There 
is a certain delay between the laser and the electron 
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Fig. 2. Trajectories of electrons reflected from the evanescent wave. The electron velocity u = 6 X 10s cm/s, iaser pulse duration 
7= 10-12 s, angle of incidence of electrons upon the evanescent wave is lo”, laser pulse energy W = 10e4 J, laser spot area S = 10e6 

cm’. 

pulses, which allows the reflection of the electrons to 
be optimized. The time dependence of the laser pulse 
shape has been defined in the form of a hyperbolic 
cosine which describes the shape of the real laser 
pulses well enough. The laser field parameters used 

in modeling are as follows. The laser pulse energy 
W = low4 J, pulse duration at half maximum, T = 
lO-‘2 s, laser spot size S = 10m6 cm’, laser wave- 
length A = 500 nm, and electron velocity u = 5.9 X 

lo8 cm/s (E= 100 eV>. 

Fig. 2 presents the theoretical trajectories of the 
electrons reflected from the evanescent wave. As 
already noted in Section 4, the character of reflection 
depends on the initial spatial location of the electron 

at the instant the laser pulse arrives. This is mani- 
fested in the figure in the relationship between the 

angles of reflection of the electrons and their trans- 
verse position in the electron beam: electrons located 
in different points of the beam cross-section come to 
the dielectric surface at different moments of time. In 

20 3.0 PS 

Time 
Fig. 3. Behaviour of the transverse velocity component of the electrons reflected by a femtosecond laser pulse. 
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the case of a sufficiently long laser pulse (T= 1000 
fs) illustrated in the figure, reflection is almost of 
mirror character. Where laser pulses are shorter, the 
difference in the angle of reflection between individ- 
ual electrons is greater. 

To characterize the time shape of the reflected 
electron beam, we have calculated the variation of 
the transverse velocity component of the electrons in 
the course of their reflection by light. Fig. 3 shows 
the behavior of the transverse velocity of the elec- 
trons reflected by light. The characteristic variation 
time of the transverse electron velocity component 
amounts to 120 fs, and it is exactly this time that 
governs the duration of the reflected electron pulse. 
The duration of the reflected electron pulse is much 
shorter than that of the light pulse because only those 
electrons, which arrive at the dielectric surface at the 
instant the light pulse is at its maximum, are re- 
flected. 

6. Some additional effects 

There are a number of physical effects that may 
change the character of reflection of electrons by 
light. Let us briefly consider these effects. 

6.1. Coulomb repulsion 

The effect of the Coulomb repulsion on the broad- 
ening of the reflected electron pulse can be evaluated 
by using the conservation law for the reflected elec- 
tron cloud ensemble. The total energy N of free 
electrons is 

(18) 

where fi and vi are the coordinate and velocity of 
the ith electron, respectively. 

Following its reflection from the evanescent wave, 
the electron pulse propagates freely. Its total energy 
remains unchanged, but the Coulomb interaction be- 
tween the electrons making up the pulse causes its 
potential energy to convert into kinetic energy, so 
that the reflected electron ensemble suffers both 
spatial and temporal broadening. 

Assuming that the initial size of the reflected 
electron cloud and the initial spread of the electron 
velocities therein are much smaller than their respec- 
tive final values, we get from Eq. (18), 

1 e2 
--N- ;(Eu;), 
4 (gri,) 

(19) 

where (8r,> is the initial size of the reflected 
electron cloud and (au,) the final velocity spread of 
the cloud. The increase of the electron pulse duration 
due to the Coulomb repulsion is 

(20) 

where /‘, is the electron flight distance from the 
mirror to the observation region. Based on Eqs. (19) 
and (20), the duration of the Coulomb-broadened 
reflected electron pulse is given by 

(21) 

With the initial size of the electron cloud of N = 100 
electrons, it equals that of the light spot, i.e. (grin> 
= lOh, and L’, = 1 cm, 8r,, = 10 ps, which is much 
greater than the duration of the reflected electron 
pulse. The above mentioned number of electrons in 
the reflected pulse, i.e. N = 102, corresponds to an 
incident electron beam with a current of I = 200 
k.A, which is typical of electron beams with an 
energy E = 100 eV considered. The Coulomb repul- 
sion effect can be substantially weakened by raising 
the initial electron velocities, reducing the electron 
beam current, and using the numerous techniques 
resorted to in electron optics to compensate for the 
Coulomb repulsion. 

6.2. Thomson scattering 

In quantum terms, the above-described reflection 
of electrons occurs as a result of the stimulated 
Compton scattering in the laser field, whereby a 
photon with a wave vector k, is induced to be 
scattered by an electron to form a photon with a 
wave vector k,. Apart from this scattering process, 
also Thomson scattering takes place, with its associ- 
ated force FT = ir:E* on the laser field side. The 
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ratio between the gradient force in the evanescent 
wave and the Thomson scattering force is 

1 A2 IV(E2)I 2 A 
F,,/Fr= 71 Et = ;J. (22) 

e e 

It follows from Eq. (22) that for visible radiation the 
gradient force is substantially stronger than the 
Thomson scattering force. 
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6.3. Radiative reaction force 

An electron in the evanescent wave experiences a 
gigantic acceleration, but the amount of radiant en- 
ergy it gives up in the course of interaction (reflec- 
tion) is insignificant. The loss of the electron energy 
by radiation is AE = jl dt = Ir, where I = 
2e2W 2/3c3 is the radiation intensity of the moving 
electron [12], W is its acceleration, and T is the 
duration of the light pulse. The relative change of the 
electron energy upon reflection is A E/E = r,/rc = 
lo- ‘* , i.e. negligible. 

7. Conclusion 

The possibility of reflection of electrons by an 
evanescent wave formed upon the total internal re- 
flection of femtosecond light pulses from a dielec- 
tric-vacuum interface is considered. The duration of 
the reflected electron pulses may be as long as 100 
fs. The basic effects attending the reflection of elec- 
trons are analyzed. Such ultrashort electron pulses 
may possibly find application in studies into the 
molecular dynamics of chemical reactions [ 181. 
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