
PHYSICAL REVIEW A 82, 052903 (2010)

van der Waals interaction of an atom with the internal surface of a
hollow submicrometer-size cylinder
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We analyze the van der Waals interaction of an atom with the internal surface of a metal or dielectric
submicrometer-sized cylinder and derive closed analytical equations for the van der Waals surface potential and
force in the electrostatic approximation. We show that for a concave cylindrical surface the van der Waals potential
energy can be up to four times larger than for a flat surface. This result is qualitatively explained by a reduction
in the effective distance between the atom and the concave surface compared to that for a flat surface. We also
evaluate the shape of an atomic beam propagating inside a hollow dielectric submicrometer-sized cylinder and
we propose a scheme that will enable a precise measurement of the van der Waals constant C3.

DOI: 10.1103/PhysRevA.82.052903 PACS number(s): 34.35.+a, 32.70.Jz, 37.90.+j

I. INTRODUCTION

In recent years there has been increasing interest in the
interaction of atoms with submicrometer-sized bodies, such
as nanospheres, nanowires, and nanofibers. One of the most
important effects that influences the interaction of atoms with
the surface of a metallic or dielectric nanobody is the van der
Waals interaction [1–18]. This interaction is fundamental in
nature and is often viewed as a limit to the Casimir-Polder
interaction [5] when the separation between the atom and
the surface is less than λ/2π , where λ is a wavelength
corresponding to a characteristic atomic transition.

In experimental observations of the van der Waals interac-
tion the surface of the macroscopic body is often considered
to be a flat surface. Such an assumption is evidently fairly
good for atoms located near the surface of the body, i.e., at
distances x0 from the surface that are small when compared
to the radius of curvature R of the surface, x0 � R. However,
for those atoms located at distances comparable to or greater
than the surface curvature radius, x0 >∼ R, the van der Waals
interaction potential can differ from that for the flat surface.
For a concave surface one should expect an increase in the
van der Waals interaction potential. This is explained by a
decrease in the effective distance between an atom and the
surface. Conversely, one should expect a decrease in the van
der Waals interaction potential for a convex surface.

Even though the tendency in the deviation of the van der
Waals potential for concave and convex surfaces from that for a
flat surface is clear, there is an open question on the quantitative
estimate of the contribution of the surface curvature to the
energy of the van der Waals interaction. Such a question is of
importance for the experiments on the interaction of cold atoms
with microtoroids, microspheres and nanospheres, nanowires,
and nanofibers [19–25]. In particular, surface curvature can
be important in the case of propagation of atoms inside
cylindrical surfaces when the interaction time may be long,
and accordingly the cumulative effect of the van der Waals
interaction can be considerable [26].

Generally, in order to evaluate the van der Waals interaction
energy for any type of curved surface one must solve a
complicated QED problem in which the retardation effect
of the quantized electromagnetic field and the absorbing and
dispersing properties of the metal or dielectric medium are

considered [5–7,18]. However, when dealing specifically with
nanobodies with sizes less than λ/2π � 100 nm and assuming
that the distance between the atom and the nanobody is of the
same order of magnitude, the van der Waals energy can be
evaluated using a relatively simple electrostatic approach. To
the authors’ knowledge, there are no known closed analytical
solutions to the van der Waals nonretarded interaction of an
atom with a small-sized cylinder. The known general equations
for the van der Waals energy for cylindrical surfaces usually
reproduce an r−3 dependence for extremely small distances,
but they do not give an explicit functional dependence for
regions with dimensions similar to the size of the cylinders.

In this paper, we evaluate the effect of surface curvature
on the van der Waals interaction potential for an atom in the
vicinity of a concave cylindrical surface and we will consider
the atom-surface interaction in the electrostatic approximation.
Accordingly, we restrict our studies to the case of a hollow
micro- or nanocylinder, with radius R and distances x0,
between an atom and surface that are small compared to the
optical wavelength R,x0 � λ. We assume that the surface of
the micro- or nanocylinder is metallic or dielectric. Since we
are specifically interested in the role of the surface curvature
on the solutions, we neglect the dispersive properties of the
medium [27,28].

Derived analytical equations for the van der Waals interac-
tion potential explicitly show that, for a concave cylindrical
surface, the reduced effective distance between an atom
and the surface increases the magnitude of the van der
Waals interaction potential when compared to a flat surface.
Quantitatively, we find that, in the central region, the potential
of the surface interaction for a concave cylindrical surface can
be up to four times higher than for the flat surface. As an
example of the use of the derived equations we evaluate the
shape of an atomic beam propagating inside a hollow dielectric
cylinder and conclude that such a scheme can be used for
measuring the van der Waals coefficient C3.

II. ATOMIC DIPOLE NEAR A FLAT SURFACE

As a starting point, we reintroduce the well-known results
for the value of the van der Waals interaction energy between
an atomic dipole and a flat surface. Consider first a dipole
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FIG. 1. (a) Position of a dipole and its image near a flat interface
separating a conducting medium and vacuum or a dielectric medium
with permittivity ε1 and vacuum. (b) Position of a dipole between two
flat metal or dielectric surfaces.

located in the vicinity of the conducting medium as shown in
Fig. 1(a). The surface of the conducting medium is assumed
to coincide with the Oyz plane of the reference frame and
the atomic dipole lies in the Oxy plane. The atomic dipole
is assumed to be formed by the charges e1 = −e and e2 = e

placed at points x1 = x0 − ξ/2,y1 = y0 − η/2 and x2 = x0 +
ξ/2,y2 = y0 + η/2, respectively.

In a chosen geometry, the electrostatic potential at any point
P (x,y) in the Oxy plane is defined by the real charges e1 and
e2 and the image charges e′

1 = −e1 = e and e′
2 = −e2 = −e

located at points −x1,y1 and −x2,y2,

ϕ(x,y) = e

(
− 1

r1
+ 1

r2
+ 1

r ′
1

− 1

r ′
2

)
, (1)

where ri and r ′
i are the distances from charges ei and e′

i = −ei

with i = 1,2 to the observation point P (x,y). The potential
energy of the dipole after exclusion of the constant interaction
energy between the charges e1 and e2 is usually defined by [29]

U = 1

2

∑
eiϕ

′
i = 1

2
(e1ϕ

′
1 + e2ϕ

′
2), (2)

where ϕ′
1 and ϕ′

2 are the field potentials produced by the image
charges at location points of charges e1 and e2,

ϕ′
1 = e

(
1

2x1
− 1√

(x1 + x2)2 + (y1 − y2)2

)
, (3)

ϕ′
2 = e

(
1√

(x1 + x2)2 + (y1 − y2)2
− 1

2x2

)
. (4)

For small distance between the charges e1 and e2 constituting
an atomic dipole the decomposition of the potential energy
(2) up to second order in small distances ξ and η gives the
interaction energy between the dipole, located at position
x0,y0, and the conducting plane as

U = −2d2
x + d2

y

16x3
0

, (5)

where dx = eξ and dy = eη are the projections of the dipole
moment.

Next, by rotating the dipole in the Oyz plane around the
center of the dipole through an arbitrary angle, and taking
into account the conservation of the length of the dipole d2 =
d2

x + d2
y + d2

z , one can write out the general equation for the
interaction energy in the electrostatic approximation,

U = −2d2
x + d2

y + d2
z

16x3
0

. (6)

Applying this equation to the ground state of the atom and
assuming quantum-mechanical averaging over the internal
atomic states with〈

d2
x

〉 = 〈
d2

y

〉 = 〈
d2

z

〉 = 1
3 〈d2〉, (7)

one can finally write out the van der Waals potential as

U = −C3

x3
0

, (8)

where the quantity

C3 = 〈d2〉
12

(9)

is the van der Waals constant for a metal-vacuum interface.
When the flat surface separates the semi-infinite dielectric,

with dielectric permittivity ε1, and the vacuum semi-infinite
region, with ε2 = 1, and the atomic dipole is placed in the
vacuum region, a similar treatment will reproduce Eq. (8)
where the van der Waals constant for the dielectric-vacuum
interface is given by

C3 = (ε1 − 1)〈d2〉
12(ε1 + 1)

. (10)

It is worth noting that, if one applies a formal transition from
the dielectric-vacuum interface to the metal-vacuum interface,
one can set ε1 = −∞ and, accordingly, obtain a transformation
of Eqs. (10) to (9).

Note also, for future comparison, that when an atomic
dipole is placed between two flat surfaces as shown in Fig. 1(b)
the van der Waals potential can be found by the procedure
outlined here as [30]

U = −8C3

L3

∑
n=1,3,5,...

(
1

(n − 2x/L)3
+ 1

(n + 2x/L)3

)
, (11)

where L is the distance between the flat surfaces and x =
L/2 − x0 is the displacement of the dipole with respect to
the central plane Oy. When x → ±L/2 the potential (11)
transforms into the potential (8).

III. ATOMIC DIPOLE INSIDE A CYLINDRICAL SURFACE

Consider now the case where an atomic dipole is placed
inside an infinitely long hollow metal cylinder of radius R.
The atomic dipole is at a distance ρ0 from the center and,
accordingly, at a distance x0 = R − ρ0 from the surface of the
cylinder, as shown in Fig. 2. For this geometry the potential
of the electrostatic field produced by a point charge placed
inside the cylinder can be found in [31]. For definiteness, we
assume that the cylindrical surface is held at zero potential. For
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FIG. 2. Position of an atomic dipole inside the cylindrical
interface separating the internal vacuum region and the external region
with permittivity ε1.

our purposes, it is convenient to apply the addition theorem
for cylindrical functions and to represent the potential of the
charge e, located at position z′,ρ ′,φ′, in a form that explicitly
separates the Coulomb part of the potential and the part that
is due to the presence of the conducting cylindrical surface. In
such a form the potential inside the hollow cylinder at point
z,ρ,φ is given by

ϕ(z,ρ,φ) = e

r
− 2e

π

∫ ∞

0
cos k(z − z′)

+∞∑
m=−∞

eim(φ−φ′)

× Km(kR)

Im(kR)
Im(kρ)Im(kρ ′)dk. (12)

In this equation, r is the distance from the charge e to the
observation point and Km(x) and Im(x) are the modified Bessel
functions.

The potential energy of the fluctuating dipole placed inside
the conducting cylindrical surface is, again, defined by a
general equation (2),

U = 1
2e(ϕ′

2 − ϕ′
1), (13)

where ϕ′
1 is the potential at the position of charge e1 = −e and

ϕ′
2 is the potential at the position of charge e2 = e. The potential

at the location point of charge e1 is defined by Eq. (12) as

ϕ′
1 = 2e

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)
I 2
m(kρ1)dk + e

r12

− 2e

π

∫ ∞

0
cos k(z1 − z2)

+∞∑
m=−∞

eim(φ1−φ2)

× Km(kR)

Im(kR)
Im(kρ1)Im(kρ2)dk. (14)

Here, the first term defines the contribution of charge e1

and the second and third terms come from the contribution
of charge e2 = e, with r12 being the distance between the

charges. The potential at the location point of charge e2 is
defined by Eq. (12) as

ϕ′
2 = 2e

π

∫ ∞

0
cos k(z2 − z1)

+∞∑
m=−∞

eim(φ2−φ1) Km(kR)

Im(kR)
Im(kρ1)

× Im(kρ2)dk − e

r12
− 2e

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)
I 2
m(kρ2)dk.

(15)

The first and second terms define the contribution of charge
e1 and the third term comes from the contribution of charge
e2 = e, with r12 again being the distance between the charges.

The potential energy of the dipole located inside the
concave cylindrical surface after extraction of the constant
interaction energy between the charges, e1 = −e and e2 = e,
is therefore given by

U = −e2

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)

[
I 2
m(kρ1) + I 2

m(kρ2)

− 2 cos k(z2 − z1) cos m(φ2 − φ1)Im(kρ1)Im(kρ2)dk
]
.

(16)

Taking into account that the size of the atomic dipole is
much less than all the other sizes in the considered geometry,
we introduce the projections ξ,η,ζ on axes x,y,z of the
distance between the charges and expand the integrand (16)
up to second order in small distances ξ,η,ζ . This gives the
potential energy of the atomic dipole as

U = − 1

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)

{
k2

4
[Im−1(kρ0) + Im+1(kρ0)]2

× (dx cos φ0 − dy sin φ0)2 + I 2
m(kρ0)

×
[
m2

ρ2
0

(dx sin φ0 + dy cos φ0)2 + k2d2
z

]}
dk, (17)

where dx = eξ , dy = eη, and dz = eζ are the projections of
the dipole moment and ρ0,φ0 are the cylindrical coordinates
of the center of the dipole. For the ground state of the atom,
the van der Waals potential after averaging over the atomic
transitions, taking into account Eq. (7) and following some
simplification, can be written as

U = −2C3

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)

× [
I 2
m−1(kρ0) + 2I 2

m(kρ0) + I 2
m+1(kρ0)

]
k2dk, (18)

where the van der Waals constant C3 is defined by Eq. (9).
The van der Waals potential, as a function of distance from the
cylindrical surface, can be written as

U = −C3

x3
0

µ, (19)
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FIG. 3. The van der Waals potential for an atom placed inside a
concave cylindrical surface as a function of distance from the center
of the cylinder, U0 = C3/R

3.

where the quantity µ, which we call the internal cylindrical
surface factor, is

µ = 2x3
0

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)

× [
I 2
m−1(kρ0) + 2I 2

m(kρ0) + I 2
m+1(kρ0)

]
k2dk (20)

and ρ0 = R − x0.
If the cylindrical surface separates the internal vacuum re-

gion and the outer dielectric medium, which has a permittivity
ε1, and the atom is placed in the internal region as shown in
Fig. 2, similar calculations will lead to Eqs. (18)–(20), where
the van der Waals constant C3 is defined by Eq. (10).

The van der Waals potential for an atom placed inside a
cylindrical surface, as a function of the radial coordinate, is
shown in Fig. 3. A quantitative deviation of the cylindrical
surface potential from that for a flat surface can be seen from
the position dependence of the internal cylindrical surface
factor, as shown in Fig. 4. From Fig. 4 it is evident that the
potential for a concave cylindrical surface coincides with that
for a flat surface at ρ0 → R when µ → 1 and exceeds that for
a flat surface by a factor of 4 near the center of the cylinder.

Figure 5 shows a comparison between the van der Waals
potentials determined for two distinct cases (i.e., that of a
cylinder of diameter 2R and that of two planes separated by

FIG. 4. The internal cylindrical surface factor µ as a function of
distance from the center of the cylinder.

FIG. 5. Dependence of the van der Waals potential on the
displacement of an atom from the axis of the cylindrical surface
of diameter 2R (solid line) and from the central plane surrounded by
two parallel flat surfaces separated by distance L = 2R (dashed line).

a distance L = 2R). In both cases, the qualitative behavior
of the potential is similar although the absolute value of the
potential for the cylindrical surface exceeds that for the two
planes by a factor of 2 near the central region. The twofold
increase in the magnitude of the potential as compared to that
for the two-plane case corresponds to a value of the cylindrical
surface factor equal to 4 in the central region. Qualitatively, the
value of the cylindrical surface factor µ can be understood by
comparing the cylindrical surface surrounding the atom with
two planes symmetrically displaced from the atom to the left
and right, as shown in Fig. 1(b). In the case of two planes, the
surface factor is twice as high compared to that for a single
plane [30]. Since the cylindrical surface can be approximately
treated as two pairs of planes symmetrically displaced from
the atom in directions ±x, ± y, it is natural to expect the
appearance of a factor of 2 × 2 = 4 in this case.

We note here that, in previous works dealing with the
interaction between an atom or molecule and a cylindrical
surface, the electrostatic approximation was typically consid-
ered for the case of the atom very close to the external surface
of the microcylinder. In this case dependence of the van der
Waals potential on the distance between the atom and the
surface x0 was reduced to the known x−3

0 dependence for a flat
surface [15,32]. Position dependence of the potential for the
concave cylindrical surface over a broad range of distances was
considered in [16]. However, in Ref. [16] the van der Waals
potential considered at the axis of the cylinder as a function of
the cylinder radius R exhibited R−2 behavior. Such behavior
contradicts the R−3 dependence shown in Eq. (19) and the L−3

dependence shown in Eq. (11).
The van der Waals potential for a cylindrical surface as

determined here can be used to find the corresponding force,
F = −∂U/∂ρ0, on the atomic dipole:

F = 2C3

π

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)
{Im−1(kρ0)[Im−2(kρ0)

+ 3Im(kρ0)] + Im+1(kρ0)[Im+2(kρ0) + 3Im(kρ0)]}k3dk.

(21)

When considered as a function of distance from the cylindrical
surface, the force can be written as a product of the force for a
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FIG. 6. Dependence of the van der Waals force on the radial
coordinate for an atom placed inside a cylindrical surface. The force
is normalized to F0 = C3/R

4.

flat surface and the internal cylindrical surface factor ν,

F = 3C3

x4
0

ν, (22)

where

ν = 2

3π
x4

0

∫ ∞

0

+∞∑
m=−∞

Km(kR)

Im(kR)
{Im−1(kρ0)[Im−2(kρ0)

+ 3Im(kρ0)] + Im+1(kρ0)[Im+2(kρ0) + 3Im(kρ0)]}k3dk

(23)

and ρ0 = R − x0.
The position dependence of the force is shown in Fig. 6.

Figure 7 shows the position dependence of the cylindrical
surface factor ν. At ρ0 → R the force for a cylindrical surface
coincides with that for a flat surface and ν → 1. Near the center
of the cylinder the force is zero due to the axial symmetry of
the surface. The factor ν reaches its maximum value of about
1.2 at x0 � 0.4 R; that is, at this distance the force on the atom

FIG. 7. The cylindrical surface factor ν as a function of distance
from the center of the cylinder.

is 1.2 times larger for a concave-shaped cylindrical surface
than for a flat surface.

IV. PROPAGATION OF ATOMS INSIDE
A CYLINDRICAL SURFACE

The aforementioned analytical evaluations of the van der
Waals potential and force for the interaction between an atom
and a submicrometer-sized concave cylindrical surface can be
used for comparison with experimental data in measurements
of the van der Waals coefficient C3. In known measurements
of C3 the van der Waals interaction was mostly assumed to
originate from the interaction between an atom and a flat
surface. Shih and Parsegian [33] reported on a measurement of
C3 in an experiment on the deflection of a thermal atomic beam
by a large-sized gold cylindrical surface which they treated as
flat. A measurement of the van der Waals interaction between
an atom and a surface has also been done via spectroscopic
studies of Rydberg atoms in a micron-sized, parallel-plate
metallic cavity [30,34]. Landragin et al. [35] measured the

FIG. 8. (a) Profile of an atomic beam propagating through a dielectric cylinder of radius R = 50 nm and length l = 1 µm; density of atoms
in the cross section of the beam at distance (b) z = 0 nm, (c) z = 1 µm, and (d) z = 6 µm.
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van der Waals potential for cold atoms released from a
magneto-optical trap (MOT) and deflected off a dielectric
prism. A very precise measurement technique was developed
based on atom reflection by material surfaces [36,37] and
scattering of atoms by material gratings [38].

As an example, we will now consider the mechanical action
of the concave cylindrical surface potential on an atomic
beam propagating inside a small-sized hollow cylinder. In our
scheme, shown in Fig. 8, a collimated atomic beam propagates
inside a short, hollow, dielectric cylinder. During propagation
the atoms gain transverse velocity due to their attraction to
the cylindrical surface through the van der Waals force. The
bottom plots in Fig. 8 show numerical simulations of the
atomic beam density at three different cross sections for a
beam of Cs atoms propagating with a longitudinal velocity
vz = 50 m/s through a hollow dielectric cylinder of radius
R = 50 nm and length l = 1 µm. For evaluation purposes,
the van der Waals coefficient is taken to correspond to the
interaction between ground-state Cs atoms and fused silica,
i.e., C3 = 1.56 kHz µm−3 [39].

Computer simulations for these parameters show that prop-
agation of an atomic beam through the hollow, submicrometer-
sized cylinder can result in a considerable increase in the
atomic transverse velocities due to the attractive van der
Waals force. Accordingly, the transverse distribution of the
atomic beam density can be considerably modified with a clear
separation over the narrow internal section near the cylinder
axis and a relatively broad pedestal as shown in Figs. 8(b)–8(d).
Computer simulation also shows that the most profound
modification of the atomic beam density occurs in the beam
cross sections located at the distances exceeding the length of
the cylinder tube as, for example, can be seen in Fig. 8(d).
This happens when at sufficiently long propagation time the
transverse velocity distribution modified by the van der Waals
forces transforms into the modified transverse coordinate
distribution. Therefore numerical simulations based on the

derived analytical evaluations prove that a measurement of
the atomic beam transverse density profile at different cross
sections can be viewed as a sensitive tool to determine the van
der Waals coefficient C3. In the proposed scheme there can be
technical difficulties associated in particular with outgassing
of the submicrometer-diameter tubes. However, in the example
considered the length of the tube chosen is so small that the
achievement of UHV should be a realistic task.

V. CONCLUSION

The evaluation of the van der Waals interaction using an
electrostatic approximation, as presented in this paper, yields a
closed analytical representation for the van der Waals potential
and force for concave micro- or nanocylinders. The derived
potential shows that the energy of the van der Waals interaction
between an atom and a concave cylindrical surface can be up
to four times higher than that for a flat surface and up to twice
as high as that for two parallel flat surfaces.

Computer simulations of atomic beam propagation inside
a small-sized, cylindrical channel in bulk material shows that
the van der Waals force can produce a sharp transformation of
the atomic beam profile, with a clear separation of an internal
narrow peak from a broad pedestal. This transformation of the
atomic beam transverse density profile is related to the strength
of the van der Waals interaction and can accordingly be used
for measurements of the coefficient C3.
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