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Focusing of atomic beams by near-field atom microlenses: The Bethe-type
and the Fresnel-type microlenses
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We analyze focusing of atomic beams by the atom near-field microlenses produced by the laser fields
diffracted on the apertures in the metallic screens. Analysis of the focusing properties of the atom microlenses
is given in a model describing dipole interaction of atoms with a far-off-resonance laser light. Two types of the
atom microlenses are considered: The Bethe-type microlens with aperture less than the light wavelength and
the Fresnel-type microlens with aperture about the wavelength. It is shown that both types of the atom
microlenses are able to produce strong dipole gradient forces which can focus the atomic beams. However,
while the Bethe-atom microlens is able to produce sharp focusing of the beams the Fresnel-atom microlens
possesses weak focusing property due to high anharmonicity of the gradient force. We conclude that the
Bethe-atom microlens can be considered as a promising tool of the atom optics potentially able to focus atomic

beams into spot sizes about nanometers.
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I. INTRODUCTION

In past years there is a growing number of experimental
studies on focusing of atomic beams by laser light. Focused
atomic beams are of interest for various applications includ-
ing atom optics, microfabrication and nanofabrication, and
atom lithography with nanometer resolution. Optical tech-
niques have already been applied for focusing of atomic
beams by Gaussian laser beams [1,2], hollow laser beams
[3-8], and standing waves of the laser light [9-17]. A new
and insufficiently studied approach to atomic beam focusing
involves the atom near-field microlenses formed by the opti-
cal fields existing in the vicinity of small apertures in metal-
lic screens [18,19]. This approach is interesting in view of
the possibility of fabricating a large set of the atom micro-
lenses and, accordingly, the possibility of producing a large
set of the atom microbeams from a single initial atomic
beam.

As in other approaches employing laser fields, the focus-
ing properties of the atom near-field microlenses are based
on the use of the dipole gradient force. However, in contrast
to other approaches, in which the gradient force is due to the
nonuniform field distribution over the laser beam cross sec-
tion or over the wavelength of the laser light, the gradient
force in the atom microlenses is associated with the optical
field nonuniformity over the aperture diameter. Conse-
quently, an atom microlens with a diameter smaller than or
about the field wavelength may produce an atomic micro-
beam with a small diameter, while a set of near-field micro-
lenses can produce a large number of microbeams. The latter
can be used for preparing microstructures and nanostructures
on substrates.

The scheme of a near-field atomic focusing was previ-
ously considered on the basis of a qualitative analysis of the
effective atomic potential in a diffracted optical field [18,19].
The analysis revealed that effective focusing can be obtained
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for relatively slow atomic beams. For a high velocity of at-
oms, short time of interaction of the atoms with the laser
field limits the focusing ability of the near-field atom lenses.

This study aims at quantitative analysis of focusing prop-
erties of the atom near-field microlenses whose diameter is
smaller than or about the wavelength of the optical field. For
this purpose, we analyze the field distribution in the vicinity
of a small aperture in a metallic screen and calculate the
dipole gradient force on an atom in the diffracted field. The
gradient force is used for numerical analysis of atomic tra-
jectories in the near-field atom microlenses and for obtaining
analytical estimates of the microlenses parameters.

We present an analysis of the two types of the atom mi-
crolenses: The Bethe-type microlens with aperture size less
than the light wavelength and the Fresnel-type microlens
with aperture size about the wavelength. Analysis of the
Bethe-atom microlens is based on the known analytical so-
lution of the problem of diffraction of a plane electromag-
netic wave on a small-radius circular aperture in an infinitely
large metallic screen [20-27]. Bethe [20] was the first who
worked at this problem; the analytical solution to this prob-
lem was obtained in the final form by Bouwkamp [21,22].
Consideration of the Fresnel-atom microlens is based on nu-
merical and analytical analysis of the Rayleigh-Sommerfeld
diffraction formula.

II. BETHE-ATOM MICROLENS

Scheme of the Bethe-atom microlens is shown in Fig.
1(a). In this scheme, laser light is incident from the left on a
conducting screen with a circular aperture with radius a con-
sidered to be smaller than the light wavelength A. An atomic
beam is also incident from the left on the screen with an
aperture and is focused by the gradient force.

We assume that the electromagnetic field of the incident
laser light is defined by the field vectors E/(r,7) and H(r,?),
while the electromagnetic field of the light reflected from the
screen in the absence of the aperture is defined by field vec-
tors Eq(r,7) and Hj(r,7). Accordingly, in the absence of the
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FIG. 1. (a) Bethe-type atom microlens. 1: the field produced by
the incident laser light and the light reflected from the aperture, 2:
focused atomic beam, 3: the field of the light transmitted through
the aperture. (b) Fresnel-type atom microlens. 1: the incident laser
light, 2: focused atomic beam, 3: the field of the light transmitted
through the aperture.

aperture total electromagnetic field on the left of the screen is
as

E,=E)+E;, H,=H;+Hj, (1)

and on the right of the screen the field is equal to zero. In the
presence of a small aperture in the screen, the electromag-
netic field can be represented according to Bethe [20]. In the
region on the left of the screen, i.e., at <0, the electromag-
netic field can be represented as a sum of the unperturbed
field and the field produced by the aperture

E1=E0+E1, H1=HO+H1. (2)

In the region on the right of the screen, i.e., at z>0, the
electromagnetic field can be represented as the field of the
light transmitted through the aperture

E,=E,, H,=H,. (3)

In the case of linear polarization of incident light, analytical
solutions are known for the above representation of the field,
which are valid to the second order in small parameter ka,
where k=27/\ is the wave vector of the light [21,22]. These
solutions can be written in a convenient form if one intro-
duces coordinates u, v, and ¢ of an oblate ellipsoid of revo-
lution
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x=a(l —u?)"?(1 +0v?)"cos ¢,

@)y=a(1-u?)"?(1+v?)"%sin ¢, z=auv,where 0=u=1,
=v=+%, 0=¢=2m. Coordinates u,v,¢ being expressed
in terms of the Cartesian coordinates are as

1 22 2 2\2 2.271/211/2
u=—="Ha"—r"+[(a*-r)" +4a"z"]"*}'",

V2a

v= VEz{az — P +[(a® =) +4a*?]"?12, p=arctg(y/x),

(5)
where r=(x*>+y2+z%)"2.

Using introduced coordinates, we write out below the
field vectors for linearly polarized incident light wave [21].
Then, we represent circularly polarized light wave as a sum
of two linearly polarized waves and, applying the Bou-
wkamp formulas twice, write out the field vectors for circu-
larly polarized incident wave. These results are used to find
the energy density of the field and the dipole gradient force
on the atom.

A. Electromagnetic field
1. Linear polarization

We choose first the incident laser light in the form of a
plane traveling linearly polarized wave and write the electric
vector of the wave in the form

E)=eA cos(kz — i), (6)

where e, is the unit vector along the Ox axis, A is the am-
plitude, and k=w/c is the wave vector. The intensity of in-
cident wave (6) is I,=cA?/ 8.

If there were no aperture in the metallic screen, incident
wave (6) would produce a reflected wave with an electric
vector

0=—eA cos(kz + wt). (7)

Thus, in the absence of an aperture, the electromagnetic field
on the left of the screen is represented by a standing light
wave

E)=E{+E{=2e,A sin kz sin wt, (8)

H, =H;+H{j=2e,A cos kz cos wt, 9)

while the electromagnetic field on the right of the screen is
equal to zero.

When a small aperture of radius a exists in the screen, the
Cartesian components of the field vectors E, and H, on the
right of the screen can be written as

E”‘=A5”' sin wft, (10)

(11)

where i=x,y,z. Dimensionless amplitudes of the electric
field components entering Eq. (10) have the form [21]

H,,=AH,; cos wt,
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(12)

Dimensionless amplitudes of the magnetic field components
entering Eq. (11) have the form

4 Xyv

7_Ta2(u2 +03) (1 +vH)¥

er=_

H

2 v (x> =y
,y=1—; arctg v + —

WP a* (W +vH)(1+0vH)? |

4 yu

Hypmm — .
& ma(u® +v?)(1 +0v?)

(13)

The Cartesian components of the field vectors E; and H; on
the left of the screen can be written in an analogous form

Eli=Agli sin wt, (14)

Hj;=AH, cos wt. (15)

In Eq. (14) dimensionless electric field components have the
form

1

2
E.=2sinkz—kz— —kau| 1l +v arctgv + ——-
ke LT M[ v gv 3(u +v?)

w

2oy
+ 9’
3a*(u? + v3)(1 +v?)?

o - 4 kxyu
b= 3malu® +v3)(1 +0v3)*
4 kxv
glz (16)

T3+ )1 +0Y)

Dimensionless magnetic field components entering Eq. (15)
are given by

4 Xyv
mad*(u? +02) (1 +0v?)?’

Hlx =

2 v
H,,=2coskz—1—-—| arctg v +
by < 7T|: g I/t2+l)2

(2 = yHv ]

T 202+ 0?1 +02)?
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4 u
H,. Y

“=_7_Ta(u2+vz)(1+v2). (17)

It should be emphasized that coordinates u# and v in the
above formulas can be expressed in terms of the Cartesian
coordinates x and y according to Eq. (5).

2. Circular polarization

Consider now a case of a circular polarized incident light
wave. The electric field of the incident wave assumed for
definiteness to be left polarized wave can be chosen in the
form

E(I) - %A[e+ei(kz—wt) _ e_e—i(kz—a)t)]

1
=- TEA[eX cos(kz — wr) — e, sin(kz — wr)], (18)
AY i

where e,=F %(exiiey) are the spherical unit vectors. The
intensity I, of the incident circularly polarized wave (18) is
chosen to coincide with the intensity of a linearly polarized
wave (6), [y=cA%/8.

In the absence of an aperture in the screen, incident wave
(18) produces a reflected wave with the electric field

Eg - _ 1A[e+e—i(kz+wt) —e ei(kz+wt)]
5 _

1
= V_EA[eX cos(kz + wt) + e, sin(kz + wt)]. (19)

Accordingly, in the absence of the aperture in the screen the
field on the left of the screen is described by a standing light
wave

E)=E)+E;=- V24 sin kz(e, sin wf — e, cos wt),
(20)

H,=H;+H;= \24 cos kz(e, sin wf — e, cos wt),
21

while to the right of the screen the field is zero.

Note now that incident circular polarized wave (18) can
be represented as a sum of two linearly polarized waves. One
of them can be obtained from linearly polarized wave (6) by
substitution

A——AN2
and the other one by substitutions

A—>A/\5, ot— wt+m2, x—y, e —e

y

y— X, e, ——e.

Accordingly, in the presence of the aperture in the screen, the
diffracted electromagnetic field produced by the circular po-
larized incident wave can be found by applying the above
substitutions to Eqs. (10)—(13) and Egs. (14)-(17).

Taking into account the above substitutions one can rep-
resent the Cartesian components of electric field E, in the
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region on the right of the screen in the convenient form

1
E,. = _EA(S:X sin wr + Cy, cos wr),
v

E. =

: e
ry A(Sﬁy sin wt + C;, cos wt),

ol

1 . . o
E. = ’_EA(SrZ sin wt + Cy_ cos wt), (22)
\

rz

where dimensionless amplitudes of the electric field harmon-
ics are as

1

2
Sfx=—kz+7—Tkau l+v arctgv+m

2yl
+ b
3a*(u® +v2)(1 +v?)?

4 kxyu
Cfx =-S,=-7_ 2)2 ’

o 3ma®+v?)(1+v

1

. 2
C,y=kz—7—7kau[l +v arctgv+m

52 _yz ]
- 3¢ + ) (1 + 03?2 |’

go_ 4 kw
T 3ru+0d)(1+0v?)’

4 kyv
= 23
3w + v (1 +0?) (23)

The Cartesian components of magnetic field H, in the region
on the right of the screen can be written in analogous form

1
H, = ’_EA(SZIC sin wt + C): cos wt),
\!
1 1 : m
H, = ’—EA(SW sin wt +CJj cos wt),
1 o -
H, = EA(Srz sin wr + C, cos w), (24)

where dimensionless amplitudes of the magnetic field har-
monics are as

o1 2 - v N ()C2 - yZ)U

=1-—|arctgv ,
= T & W +0? W+ v +0v?)?

4 Xyv
" =— Sm - — ,
= Y mat(w? + 031 +v?)?
o 1+ 2 - v ()C2 - yz)v
=—1+—|arctgv - ,
b T & W40 W+ 01 +0?)?
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gno 4w
=T ma(?+ 031 +02)°
4
=" o (25)

maW?+vH)(1 +v?)’

The Cartesian components of electric field E; in the region
on the left of the screen can be written in the form

1
E, = —EA(Sfx sin wt + Cj, cos wt),
'\J

1
Ey= _EA(57V sin wt + Cj, cos wt),
v !
1 .
E,= TEA(SIeZ sin wt + Cj, cos wt), (26)
\/’

where dimensionless amplitudes of the electric field harmon-
ics have the form

1
3(u® +v?)

4

2
,X=—25inkz+kz+—kau{l+v arctg v +
T

. 52 —y2 ]
3a* (> + v (1 +vH)? |’

4 kxyu
3ma®+v>)(1+v

e _ _ —
Ix— ly —

2)2’

. 2 1
Ciy=2 smkz—kz—;kau[l+v arctgv+m
xz_yz ]
3d%(? +vH) (1 +vH)? |
__ 4 kw4 kv
ET 3w+ (1 +0)" T 3w+ o) (1 +0d)°

(27)

The Cartesian components of magnetic field H, in the region
on the left of the screen can be written in analogous form

1
H,= ’_EA(S}Z sin wt + Cjy cos wt),
v

1 .
Hy= EA(S?; sin wt + Cjy cos wt),

1
H,= EA(S}Z sin wt + C] cos wt), (28)

where dimensionless amplitudes of the magnetic field har-
monics have the form
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BT W +0Y) (1 +0Y)]

2
%:—2005kz+1+7—7[arctgv+

(o = yHv ]

B AW+ ) (1 +v?)?

u-+v

(29)

Equations (22)—(25) completely define the electric and
magnetic vectors of the diffracted light field in the region on
the right of the screen. Equations (26)—(29) completely de-
fine the electric and magnetic vectors of the total light field
in the region on the left of the screen.

gno_ A 4 yu
BT ma(?+v?)(1+0?)

B. Electric energy density

1. Linear polarization

For linearly polarized incident light wave when the Car-
tesian components of the diffracted light field are defined by

Egs. (10)—(17) the time average density of the electric field
energy is as

1
W= 8—<Ei>z=wO > &
ar

i=x,y.z

(30)

where a=r stands for the region on the right of the screen,
a=] stands for the region on the left of the screen, and w,
=A%/16m=1,/2c is the electric energy density in the incident
light wave.

Making use of Egs. (12) one can find the electric energy
density on the right of the screen as

1

2
w,.=wg {kz— —kau(l +v arctg v + m

ks

2oy?

2
+
3a*(u® +v2)(1 + vz)z)}
(@)ZXZ[yzuz_'_aZUZ(l + 02)2]
a*(w? +v2)2(1 +v?)*

3 (B1)

The electric energy density on the left of the screen can be
found with the use of Egs. (16) as
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FIG. 2. (Color online) Electric energy density as a function of
transverse coordinates in the case of incidence of a linearly polar-
ized light wave on a screen with a circular aperture at ka=0.25 and
at distances from the aperture z=0.05a, 0.1a, and 0.5a.

2
w;=wg [2 sin kz — kz - —kau(l + v arctg v
a

1 xz_yz }2
t 2, ant2 202, 2 2 2)
3w +v°) 3a-(u"+v)(1+0v°)
(@>2x2[y2u2+a2v2(1 + 1)2)2]
a*W+ )1 +v2)*

y. (32)

Figure 2 shows the electric energy density (31) referred to
the region on the right of the screen as a function of trans-
verse coordinates. It is worth noting that the density of the
electric energy both transmitted through and reflected from
the aperture includes two different parts. One of them comes
from the internal region of the diffracted field which propa-
gates inside the aperture but not to close to the edge of the
aperture. This part is accordingly weakly perturbed by the
edge diffraction. The other part comes from the outer region
of the field strongly perturbed by diffraction on the edges of
the aperture.

The presence of the above two parts in the diffracted field
can be seen from equations for the field components if one
takes into account that at the aperture edges the coordinates
of the oblate ellipsoid of rotation are close to values u=0 and
v=0. In accordance with this observation one can also rear-
range the terms in Egs. (31) and (32) and rewrite the electric
energy density as
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Wy 1= Wo o u rl 9(1 +v2)2 3 M2+U2

cos 2 4(1 = u?)cos?
- f) rl (2 ug) (PQ > (33)
1+v 9(u* +v*)(1 +v?)
where
<I>r:1+v<arctgv—g>, (34)
T sin kz
$,=1+vlarctgv+ - - (35)
2 kz

As one may now see, the first two terms in Eq. (33) define
smooth variation of the energy density while the third term
describes sharp variation near values of coordinates u=0, v
=0, i.e., near the aperture edges. Note also that in the region
far to the left of the screen the contribution of the small
aperture is small and the electromagnetic field has a form of
the standing wave described by Egs. (8) and (9) with the
electric energy density

w, = 4w, sin® kz.

2. Circular polarization

For circular polarized incident light wave the electric en-
ergy density averaged over time is as

1 1
Wy = 8—<E§>,= —wo 2 (S +C), (36)
v

2 i=x,y,2 “
where a=r refers for the region to the right of the screen,
a=[ for the region to the left of the screen, and w,
=A%/16m=1,/2c is the electric energy density in the incident
light wave. Substituting amplitudes of the field harmonics
(23) and (27) into the above equation one can see that the
electric energy density is given by

2 1 2
w.=wg [kz— ;kau(l +v arctg v + m)}

(@)2(1—u2)[u2(1—u2)+2vz(l+v2)] (37
* (? +v)*(1 +0v?)? )

3

for the region on the right of the screen and
. 2
w;=wq) | 2 sin kz — kz — —kau| 1 + v arctg v

ar
1 2
" 3(u? +v2)>}

(@)2(1-uz)[u2(1-u2)+2v2(1+v2)] -
(u? +vH)(1 +v?%)? (38)

3

for the region on the left of the screen.

Figure 3 shows dependence of the electric energy density
w, on transverse coordinates in the region on the right of the
screen. Similar to electric energy density shown in Fig. 2 the
electric energy density shown in Fig. 3 consists of two dif-
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FIG. 3. (Color online) Electric energy density as a function of
transverse coordinates in the case of incidence of a circularly po-
larized light wave on a screen with a circular aperture at ka=0.25
and at distances from the aperture z=0.05a, 0.1a, and 0.5a.

ferent parts. One part describes a smooth variation of the
energy density within the aperture. This part is determined
by the field propagating not too close to the edges of the
aperture and, hence, slightly perturbed by the edge diffrac-
tion effect. The other part describes the sharp variation of the
energy density due to the edge diffraction.

The presence of these two parts can be clearly seen if one
rewrites the electric energy density in the form which takes
into account the fact that the coordinates of the oblate ellip-
soid of revolution at the aperture edges assume the values
u=0, v=0. After that the electric energy density can be rep-
resented as

- (@)2{ 2<q)2 + 1 )+ 2u’ o
Wri1=Wo i u rl 9(1 +v2)2 3(u2+v2) rl
2(1 - u?) }

"9+ )1+ 09

where functions @, ; are defined by Eqs. (34) and (35). The
first two terms in Egs. (39) define the smooth variation of the
electric energy density, while the last term is responsible for
the sharp variation of energy density near coordinate values
u=0 and v=0, i.e., at the aperture edges. Contributions of the
different terms of Eqs. (39) are illustrated in Fig. 4 on the
example of the electric energy density w,.

(39)
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FIG. 4. (Color online) Electric energy density on the right of the
screen in case of a circular polarized incident light wave at ka
=0.25 (a) and contributions to the electric energy density of the first
(b), second (c), and third (d) term of Eq. (39).

It is worth noting that in full accordance with intuitive
expectations energy density for circular polarized light can
be obtained by averaging energy density for linear polarized
light over the angle ¢. Putting cos? ¢=1/2 and sin® ¢=1/2
one can see that Eq. (33) transforms into Eq. (39). Note
finally that in the region on the left of the screen and at a
large distance from the screen, i.e., in the region where the
effect of the small aperture can be ignored, the electromag-
netic field is reduced to a standing wave with the field vec-
tors (20) and (21) and electric energy density

w, = 4w, sin® kz.

III. FRESNEL-ATOM MICROLENS

In the case of the Fresnel-atom microlens shown in Fig.
1(b) the radius a of the aperture in the metallic screen is
assumed to be about or exceed the light wavelength a=N\.
We consider the case of the Fresnel-atom microlens in suffi-
cient for our purposes scalar approximation. Since in this
approximation the electric and magnetic field are assumed to
propagate in the same manner, in what follows we consider
propagation of the electric field only.

Taking next into account that in the scalar approximation
the diffraction process is insensitive to polarization we as-
sume that the aperture in the screen is illuminated by a trav-
eling laser wave of arbitrary polarization

E, =eE, cos(kz — wi), (40)

where e is a unit polarization vector, E is the amplitude, and
k=w/ c the wave vector. Intensity of the incident wave (40) is
Iy=cEj/8.
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A. Electromagnetic field

For the case of the Fresnel-atom microlens the electric
field of the diffracted light can be represented in the scalar
approximation as

E,=eE=e Re(Ee™'), 41)

where £=£(r) is the complex field amplitude. The diffracted
field can be calculated by applying the Rayleigh-Sommerfeld
diffraction formula

1 ik 1
aw@=ﬁﬂaﬁwmﬂ£ﬁﬁx;qgwwz

r r

(42)

where the distance between the point x,y,z in the observa-
tion plane and the point x’,y’,0 in the aperture plane shown
in Fig. 1(b) is

r=[2+(x—x)+(-y)1" (43)

Amplitude of the field in the aperture plane according to a
standard Kirhoff approximation is considered as £(x’,y’,0)
=E, inside the aperture and E(x’,y’,0)=0 outside the aper-
ture.

To account for the axial symmetry of the scattered field
we introduce cylindrical coordinates p’, ¢’ in the aperture
plane and p, ¢ in the observation plane and rewrite the elec-
tric field as

E, (@ (*™ explikr)z( 1
E(p,z)=—°J f L-(——ik)dqvp’dp’, (44)
2w)y Jo r r

r
where now
r=[+p*+p'* = 2pp’ cos ], (45)

and @=¢'—¢ is the relative angular coordinate. Alongside
with above integral representation we derive additionally
analytical representation of the electric field valid near the
optical axis of symmetry. To do that we decompose the inte-
grand in Eq. (44) into the series in small displacement p<a.
Taking such a decomposition up to the fourth order in p we
represent the distance between the point in the observation
plane and the plane of the aperture as

" cos 1 "2 cos?
g Pese (l_e____f E

L
R PR R?

. p’ cos qo(l ~ p'? cos? go>p3
2R’ R?

1 (1 6p'?cos> ¢ 5p'*cost @
- +

-— 4 (46
3R> R? R )p’ (46)

where R=(2+p'?)"2.

After decomposition of the integrand in Eq. (44) the
double integral is reduced to more simple ordinary integral
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where R,=(z>+a?)"> and A,B,C, ... ,H are the functions of
the observation point,

1 1 7
A=1-—k*p* + —k*p*, B=1—k2p2+ak4 4,

4 64
1 11 1
C:1+_k2 2__k2 2__k42 2,
9 L TR P TP
2 3 11
D=1+ gkzz2 - ‘—tkzp2 - ik“zzpz,
E=1 Ep_z E 2 2 Lk4 2 2
T T 62 24 P T a0 P
15 p? 1
F=1-—=-2kp* - —k'z%p?,
162 P TP
1 2
G=1+—Kk7>, H=1+-k7.
10 5

The last integral can be calculated by parts to give analytical
expression for the diffracted electric field near the optical
axis of the system as

E(p,2) =EyT, (48)

where dimensionless function Z connects the diffracted and
incident field as

2.2 12 .
T= eikz<1 _ ieik(Ra—z)> + k"i( + 3 i)ezk&,
. 4R} kR, KR
Ka'zp* 2i(3-27%a%) 3(7-8z%ad%
64R> kR, k*R?
1513 -42%a?) 153 -42%d) | (49)
k3R3 + k4R4 e °

Note that in the plane of the aperture, i.e., at z=0, the dimen-
sionless function has a value of Z=1 and accordingly the
diffracted field is equal to the incident field in accordance
with the Kirhoff approximation. Note also that at p=0 Eq.
(49) reduces to the equation found in Refs. [28,29]. which
treated the diffracted field on the optical axis, i.e., in zero
order in small displacement p.

B. Electric energy density

For the diffracted field of the Fresnel-atom lens the elec-
tric energy density averaged over time is

PHYSICAL REVIEW A 77, 013601 (2008)

1 1
= —(E%),= —|&]. 50
w= g (ED, 1677|| (50)

Note that electric energy density for the incident laser wave
is wo=Eg/ 16

At small displacement from the optical axis the electric
energy density can be calculated with the use of Egs. (48)
and (49) as

W=Woj, (51)

where dimensionless function 7 is defined up to the fourth
order in small displacement p:

) 2.2 2
2 2 K*a*zp 3 <
j=1+P—;cosk(Ra—Z)‘ 2R |:<1_k2R§)<R_a

a a

3 k4 4_ 4
_COSk(Ra_Z)>+k_Ra sink(Ra—z)]+ ;2;5 {(1

3(7-82%a%)  15(3 — 42%d?) )( z KR ))
- — —cos -
k°R? KRS R, “F

1 2\ 153-47%d)) .
+k—Ra<2<3—2§)—T sin k(R,-z) |.

a

(52)

It is worth noting that in the plane of the aperture, i.e., at z
=0 and R,=a, the dimensionless function has a value of J
=1 and accordingly the electric energy density is equal to
that of the incident light wave.

Typical distribution of the electric energy density over
transverse coordinates for the Fresnel-atom lens is shown in
Fig. 5. Distribution of the electric energy density over longi-
tudinal and transverse coordinates is shown in Fig. 6. Figure
7 shows transverse profiles of the electric energy density at
different values of the longitudinal coordinate z.

IV. GRADIENT FORCE

In the general case, the atoms moving through the aper-
ture in the screen experience the action of the dipole force,
which includes the gradient force of the potential type and
the dissipative radiation pressure force [17,30]. At large
negative detunings the gradient force produces nearly poten-
tial focusing of the atomic beam while radiation pressure
force reduces to a small value. Accordingly, only the poten-
tial gradient force at large negative detuning is of interest for
atomic focusing. Moreover, since the longitudinal velocities
of atoms in the atomic beam considerably exceed the trans-
verse velocities and accordingly longitudinal kinetic energies
of the atoms exceed the transverse kinetic energies, the con-
tribution of the longitudinal component of the gradient force
to atomic trajectories is always smaller than that of the radial
component of the gradient force. For these reasons, analysis
of atomic beam focusing by near-field atom microlenses can
be done by taking into account only the radial component of
the gradient force.

The gradient force on an atom in a quasi-resonance laser
field at large detunings exceeding both the homogeneous
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FIG. 5. (Color online) Electric energy density for the Fresnel-
atom microlens at ka=10 and at distances from the screen z=0.5a,
z=1la, and z=5a.

linewidth and the Doppler shift in a model of a two-level
atom can be represented as [17,30]

F=-—VG, (53)

where 6=w—w, is the detuning of the light frequency with
respect to the atomic transition frequency,

(54)

is the spontaneous decay rate, and

o 1(dEY
“2\hy

is the dimensionless saturation parameter. In the above equa-
tions d is the matrix element of the atomic dipole moment
and E is the electric field amplitude at the location of the
atom.

For large negative detunings the radial component of the
gradient force has the form

PHYSICAL REVIEW A 77, 013601 (2008)

FIG. 6. (Color online) Electric energy density for the Fresnel-
atom lens at ka=8 (a) and ka=11 (b).

F,=—"7>—, (55)
where p=(x*>+y?)"? is the radial coordinate. This force is
directed toward the axis of the nonuniform optical field and
is accordingly responsible for focusing of the atomic beam.

For subsequent analysis, it is convenient to express the
saturation parameter in terms of the electric energy density

8md*w

12y

and take into account Eq. (54) for the spontaneous decay
rate. After this, the radial component of the gradient force,

which will be referred for brevity as the gradient force, as-
sumes the convenient form

F =6m———, 56
POl ap o

where the electric energy density to the left of the screen is
w=w,; and to the right of the screen is w=w,.

A. Bethe-atom microlens

In case of the Bethe-atom microlens and for a circular
polarized incident laser wave the gradient force (56) can be
represented in an explicit radial-symmetric form as

p
Fp==F,_nlp.2), (57)

where F is a constant quantity having the dimension of
force
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FIG. 7. Transverse profiles of the electric energy density for the
Fresnel-atom microlens at ka=8 and different values of longitudinal

coordinate z.

(58)

Iy=cA*/87 is the intensity of laser light incident on the
screen, and 7(p,z) is the dimensionless function of coordi-
nates, which is determined by the radial gradient of electric
energy density. In the regions to the right and to the left of
the screen, the dimensionless function 7= 17, /(p,z) has a uni-
fied form

e ! [uz (q) . 1+3v2>
P2 T W) 1+0? rl 9(1 +0v2)?

u? (302 - u2<1) 1 )
+ +
3+ o)\ w02 T 1402

2( v?—u? v? )}
"o\ o2 T (14022 |

We recall that the phase function @, in the regions to the
right and left of the screen is defined by Eq. (39). Depen-
dence of the gradient force F, on atomic coordinates is

shown in Fig. 8.

(59)
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FIG. 8. (Color online) Radial component of the gradient force in
case of the Bethe-atom microlens as a function of coordinates at
ka=0.25 and for circular polarized incident laser wave.

B. Fresnel-atom microlens

In case of the Fresnel-atom microlens the gradient force is
defined by Eq. (56) where electric energy density (50) can be
evaluated with the use of Eq. (44). At small displacement
from the symmetry axis the gradient force (56) is evaluated
with the use of Egs. (50)—(52) as

Fp==«(2)p+ u(2)p’,

where the “spring” constant and “anharmonicity” constant

(60)

are
Ka’z 3 z
K(z) = Fl—Rz {(l - _szﬁ)(lTa —cos k(R,—z)
P k(R,-2) (61)
KR, sin =2 |
(@) =F Kadz (1 3(7-82%a% 1503 - 4zz/a2)>
=T ggs KR KR

z 1 z
X (R——cos k(Ra—z)) + 5{2(3 —2;)

a a

15(3 -4z%/a°) | .
- kz—Rz sin k(R, - z) (62)
In the above equations
3mc’ly y
1= P H (63)
0

is a typical value of the force and /,=2cwy is the intensity of
the incident light wave. Gradient force for the Fresnel-atom
microlens is shown in Fig. 9 as a function of longitudinal and
transverse coordinates.

V. ATOMIC BEAM FOCUSING

We compare properties of the Bethe- and Fresnel-atom
microlenses by considering focusing of a beam of %Rb at-
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FIG. 9. Radial component of the gradient force in case of the
Fresnel-atom microlens as a function of coordinates at ka=10.

oms which interact with far-detuned laser light at dipole tran-
sition 528, ,,(F=3)=5 2P5,(F=4) with wavelength \
=780 nm. For this transition, the natural linewidth is 2y
=27 X598 MHz and the saturation intensity is Ig
=1.6 mW/cm?

A. Bethe-atom microlens

Figure 10(a) shows trajectories of the atoms in the beam
before and after focusing by the Bethe-atom microlens. It can
be seen from the figure that the Bethe-atom microlens fo-
cuses atoms to a small spot. At the same time, it can be seen
from Fig. 10(a) that periphery atoms in the beam are focused

1.0

0.5

x/a

0.0

-0.5

(b)

z(um)

FIG. 10. (a) Atom trajectories in the atomic beam focused by the
Bethe-atom microlens. The screen with a round aperture of a rela-
tive size ka=0.25 is illuminated by a circularly polarized light wave
at detuning 6=—3007 and intensity /=25 W/cm?. The longitudinal
velocity of atoms is V=5 m/s. (b) Atom trajectories in the same
Bethe-atom microlens in the case of blocking of the periphery at-
oms by an additional screen with a round aperture of radius r
=0.5a.
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at large distances, thus smearing the focusing region. How-
ever, this disadvantage of the atomic microlens can easily be
eliminated by blocking periphery atoms of the beam with an
opaque screen as shown in Fig. 10(b).

A simple estimate of the focal length of the Bethe-atom
microlens can be obtained on the basis of the magnitude of
the gradient force near the optical axis. Considering that the
radial force acts in the region with approximate length oz
=2a and has an approximate value F,=2F, one can esti-
mate the variation in the transverse atomic velocity during
the time of flight 7,=2a/V through the microlens as

4F od
,=——.
MYV
On the other hand, this variation in transverse atomic veloc-
ity leads to a deviation of the atomic trajectory by the angle
defined by the ratio of the transverse coordinate to the focal
length f:

v, _a
voof

The above relations show that the focal length of the Bethe-
atom microlens can be estimated as

MV?
=—, (64)
4F,

where quantity Fy/M defines the typical value of accelera-
tion due to the radial force.

Applying the above evaluation to the **Rb atomic beam
propagating with longitudinal atomic velocity V=5 m/s
through the aperture with radius a=0.08,A=0.06 wm one
can see that at laser wave intensity /=25 W/cm? and detun-
ing 6=-300y the focal length is estimated as f=5 um.
Note finally that, in accordance with estimate (64), one of the
main factors limiting the size of the focal spot is the velocity
spread of the atomic beam. Simple geometrical consider-
ations show that at a given relative velocity spread o
=AV/V the spot size at the focus amounts to a value of the
order of 2aa. For example, for velocity spread a=1072 the
spot size at the focus constitutes a few nanometers. Diffuse
broadening of the focal spot due to photon recoil fluctuations
amount to an even smaller value owing to a short time of
flight of atoms through the region of focusing field. For ex-
ample, for the above parameters of the atomic microlens, the
time of flight of an atom through the focusing field region
amounts to 7y=2a/V= 1078 s. The velocity diffusion coef-
ficient, which is defined as D:j/vf(l/ls)(y/ 0%, where v,
=hk/M is the recoil velocity, has a value of D=0.8
X 10° ¢cm?/s. Accordingly, the broadening of the transverse
velocity distribution due to photon recoil is about Av,
=\VD7;=0.1 cm/s and spatial broadening Ap=Auv 7 of the
beam in transverse direction is of the order of Ap=5
X 1073 nm. At last, for the chosen velocity of the atomic
beam, the de Broglie wavelength of the atom is as small as
App=h/p=0.1 nm. All the above estimates thus show that
the focal spot size of the Bethe-atom microlens can be of the
order of a few nanometers.
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FIG. 11. (a) Atom trajectories in an atomic beam focused by the
Fresnel-atom microlens with relative aperture ka=10 at detuning
5=-300y, laser light intensity /=25 W/cm? and longitudinal
atomic beam velocity V=5 m/s. (b) Atom trajectories when the
outer part of the atomic beam is blocked by the screen with aperture
of radius r<<0.5a for the same parameters as in (a).

B. Fresnel-atom microlens

Figure 11(a) shows the trajectories of the atoms in the
beam focused by the Fresnel-atom microlens. As one can
see, under the same parameters as for the Bethe microlens
the Fresnel microlens gives much larger focusing area. This
is naturally explained by a relatively large anharmonic part
of the gradient force for the Fresnel microlens. This draw-
back of the Fresnel microlens can be only partly eliminated
by blocking the outer part of the beam by an additional dia-
phragm as shown in Fig. 11(b).

Basic analytical estimations for the Fresnel-atom micro-
lens are as follows. According to Eq. (61) the value of the
focusing force in the region of the effective action 0<z
<3ais

p = — KoP»

where the spring constant can be estimated at average value
of the longitudinal coordinate z=3a as

_ ™y
3wy|d]

By making use of this value of the radial force one can
evaluate the oscillation frequency as

Ko

PHYSICAL REVIEW A 77, 013601 (2008)

Q=S | ™ .
M 3Mwy |8

where M is the atom mass. At a given oscillation frequency
the focus f of the Fresnel-atom microlens is defined by the
quarter of the oscillation and depends on the longitudinal
atomic velocity V,

aV V. [3mMaw,|d
=—=— . 65
f 20 2 I vy (65)

For a beam of ®Rb atoms at laser intensity /=25 W/cm?,
detuning 6=—103y, and at longitudinal velocity V=5 m/s
focal length is estimated as f=8 um which is very close to
the value coming from numerical evaluations of Figs. 11(a)
and 11(b).

The main factor which limits the spot size of the Fresnel-
atom microlens is the anharmonicity of the gradient force.
Accordingly, even for monochromatic atomic beam the spot
size of the Fresnel-atom microlens only in a few times less
than the transverse size of the initial beam.

VI. CONCLUSION

The above analysis shows that even though both the
Bethe-atom microlens and the Fresnel-atom microlens can
perform focusing of atomic beams, only the Bethe microlens
can produce sharp enough focusing. In the case of the
Fresnel-atom microlens the focusing is not effective due to a
high degree of anharmonicity of the gradient force.

The focal length of the Bethe-atom microlens is mainly
determined by the longitudinal velocity of the atomic beam,
the laser light intensity and the detuning from the atomic
transition frequency. The focal spot size of the Bethe micro-
lens is mainly determined by the velocity spread of the
atomic beam, as well as the factors depending on the beam
quality, e.g., finite divergence and spatial inhomogeneity of
the beam. The estimates show that under reasonable experi-
mental conditions the focal spot size of the Bethe microlens
can be on the order of a few nanometers. A more detailed
analysis of the Bethe-atom microlens must naturally take
into account the limitations imposed by the dipole-dipole
interaction between the atoms as well as finite value of the
atomic de Broglie wavelength [17,31].
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