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We study the action of the force and torque induced by a guided light field on a cesium atom
outside a nanofiber. We demonstrate that the evanescent light field in a circular fundamental guided
mode can force the atom to rotate around the nanofiber for a macroscopic time. We find that, due
to the action of the torque, the angular momentum of the atom increases with time.
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I. INTRODUCTION

The tightly confining traps of cold atoms allow to en-
visage a broad spectrum of applications ranging from
highly sensitive sensors to quantum information tech-
nology [1, 2]. With the use of microstructured surfaces
(atom chips), it becomes possible to confine and manipu-
late cold atoms on the micrometer-length scale [1, 2]. Mi-
crotraps used in the previous experiments are magnetic
traps produced by current-carrying wires or periodically
magnetized surfaces. Recently, the limitations of the co-
herent manipulation of neutral atoms have been found in
the traps based on current-carrying wires [3, 4]. An al-
ternative way for tightly confining of cold atoms is based
on a photon-carrying nanofiber [5, 6]. The method re-
quires the use of a single (red-detuned) light beam [5] or
two (red- and blue-detuned) light beams [6] launched into
the fiber. In the single-color scheme [5], the trapping is
achieved by the balance between the optical dipole force
of a red-detuned light field and the centrifugal force on
a spinning atom. In the two-color scheme [6], the trap-
ping is achieved by the balance between the optical dipole
forces of a red-detuned light field and a blue-detuned
light field. The optical dipole forces used in the above
schemes are produced by the gradient of the field inten-
sity in the radial direction. Such forces are conservative.
When the fields are far from resonance with the atom,
the dissipative forces are negligible. With anticipation of
preserving the coherence of the matter waves, a photon-
carrying nanofiber could be a more quiet environment for
cold atoms than a current-carrying microwire.

When the guided light field is not very far from reso-
nance with the atom outside the nanofiber, the force of
light on the atom is complicated. Due to the specifics
of the nanofibers, the electric and magnetic field vectors
of a guided mode have three different, substantial com-
ponents: axial, radial, and azimuthal [7]. Consequently,
the Poynting vector for the field in a circular fundamental
guided mode has two different, substantial components,
axial and azimuthal, which lead to axial and azimuthal
pressure forces on the atom. These forces are substantial
when the detuning of the field is not very large compared
to the absoption linewidth of the atom. The axial force
influences the translational motion of the atom along the

fiber. The azimuthal force yields a torque that influences
the rotational motion of the atom around the fiber.

In this paper, we study the action of the light-induced
force and torque on a cesium atom outside a photon-
carrying nanofiber. We demonstrate that the evanes-
cent light field in a circular fundamental guided mode
can force the atom to rotate around the nanofiber for
a macroscopic time, with an increasing angular momen-
tum.

The paper is organized as follows. In Sec. II we de-
scribe the model. In Sec. III we derive the basic equa-
tions for the internal state and center-of-mass motion of
the atom. In Sec. IV we present numerical results. Our
conclusions are given in Sec. V.

II. MODEL

We consider a cesium atom interacting with light in a
circular fundamental mode of a subwavelength-diameter
single-mode fiber (nanofiber) (see Fig. 1). The thin fiber
has a cylindrical silica core, with the radius a and the
refractive index n1, and an infinite vacuum clad, with
the refractive index n2 = 1.

A. Evanescent light field outside the fiber

We first describe the guided light field. The frequency,
free-space wavenumber, and free-space wavelength of the
field are denoted by ω, k = ω/c, and λ = 2π/k, re-
spectively. For certainty, we assume that the rotation
direction of the field polarization around the fiber axis z
is counterclockwise.

We represent the electric component of the field as E =
(Ee−iωt +E∗eiωt)/2. Outside the fiber, in the cylindrical
coordinates {r, ϕ, z}, the cylindrical components of the
envelope vector E are given by [7]

Er = iN [(1 − s)K0(qr) + (1 + s)K2(qr)]ei(βz+ϕ),

Eϕ = −N [(1 − s)K0(qr) − (1 + s)K2(qr)]ei(βz+ϕ),

Ez = N 2q

β
K1(qr)ei(βz+ϕ). (1)
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FIG. 1: Upper part: Components of the light-induced force
on an atom outside a nanofiber. Lower part: Schematic of the
6P3/2F

′ = 5 and 6S1/2F = 4 hyperfine-structure (hfs) levels
of a cesium atom.

Here β is the axial propagation constant for the fiber
fundamental mode, q = (β2 − n2

2k
2)1/2 characterizes

the decay of the field outside the fiber, and s is de-
fined as s = (1/q2a2 + 1/h2a2)/[J ′

1(ha)/haJ1(ha) +
K ′

1(qa)/qaK1(qa)], with h = (n2
1k

2 − β2)1/2 being a pa-
rameter for the field inside the fiber. The coefficient N
characterizes the amplitude of the field. The notation Jn

and Kn stand for the Bessel functions of the first kind
and the modified Bessel functions of the second kind, re-
spectively.

We introduce the notation E−1 = (Ex − iEy)/
√

2,
E0 = Ez, and E1 = −(Ex + iEy)/

√
2 for the spherical

tensor components of the field envelope vector. The ex-
plicit expressions for these spherical tensor components
are given by

E−1 =
√

2 iN (1 − s)K0(qr)eiβz,

E0 = N 2q

β
K1(qr)ei(βz+ϕ),

E1 = −
√

2 iN (1 + s)K2(qr)ei(βz+2ϕ). (2)

We note that, for conventional, weakly guiding fibers [7],
the components E1 and E0 are negligible as compared to
E−1. However, for subwavelength-diameter fibers, E1 and
E0 are not negligible at all [8]. In the close vicinity of the
surface of a thin fiber, the components E−1, E0, and E1

are comparable to each other. The effects of these com-
ponents on the atom are of the same order. Therefore,

we must include all the three components of the field in
the calculations for the atomic state.

An important characteristic of the light propagation is
the cycle-averaged Poynting vector S = (1/2)Re(E×H∗).
Here H is the envelope vector of the magnetic compo-
nent of the field. The parameter Pz =

∫ 2π

0 dϕ
∫∞
0 Szr dr,

which is the integral of the axial flow of energy Sz over
the transverse plane of the fiber, is the propagation power
of light. Since the mode considered is a guided mode,
the radial component of the Poynting vector is vanish-
ing, that is, Sr = 0. Meanwhile, the explicit expressions
for the axial and azimuthal components of the Poynting
vector are given, for r > a, by

Sz = |N |2ωε0n
2
2

β
[(1 − s)(1 − s2)K2

0 (qr)

+ (1 + s)(1 + s2)K2
2 (qr)],

Sϕ = |N |2ωε0n
2
2q

β2
[(1 − 2s2 + s2s)K0(qr)

− (1 + 2s2 + s2s)K2(qr)]K1(qr). (3)

Here we have introduced the notation s2 = (β2/k2n2
2)s.

In the case of conventional weakly guiding fibers [7], Sϕ is
small compared to Sz . However, in the case of nanofibers,
Sϕ is comparable to Sz (see Fig. 2). The component
Sϕ describes the energy flow that circulates around the
fiber. The presence of this flow is a consequence of the
fact that the longitudinal component of the field in the
fundamental mode is not zero.

Outside the fiber, the linear and angular momen-
tum densities of the electromagnetic field are given by
p = S/c2 and j ≡ [r × p] = [r × S]/c2, respectively
[9]. The axial flow of energy Sz produces the axial linear
momentum density pz = Sz/c2. The azimuthal flow of
energy Sϕ produces the azimuthal linear momentum den-
sity pϕ = Sϕ/c2. Note that Sϕ also produces the angular
momentum density jz = rSϕ/c2 with respect to the fiber
axis.

B. Atom-field interaction

We now examine the interaction of the cesium atom
with the evanescent light field outside the fiber. We
consider the hyperfine-structure (hfs) magnetic substates
|FM 〉 ≡ |LSJIFM 〉 and |F ′M ′〉 ≡ |L′SJ ′IF ′M ′〉 of a
lower state |LJ〉 and an upper state |L′J ′〉, respectively.
Here L, S, J , I, F , and M are the quantum numbers
for the orbital electronic angular momentum, electronic
spin, total electronic angular momentum, nuclear spin,
total atomic angular momentum, and magnetic momen-
tum, respectively. The electronic and nuclear spins of
atomic cesium are S = 1/2 and I = 7/2. We study the
D2 line, which occurs at the wavelength λ0 = 852 nm and
corresponds to the transition from the ground state 6S1/2

(with L = 0 and J = 1/2) to the excited state 6P3/2 (with
L′ = 1 and J ′ = 3/2). We assume that the cesium atom
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is initially prepared in the hfs level F = 4 of the ground
state 6S1/2 and that the field is tuned close to resonance
with the hfs level F ′ = 5 of the excited state 6P3/2 (see
the lower part of Fig. 1). Among the hfs components of
the D2 line, the transition 6S1/2F = 4 ↔ 6P3/2F

′ = 5
has the strongest oscillator strength. Because of the se-
lection rule ∆F = 0,±1, spontaneous emission from the
excited hfs level 6P3/2F

′ = 5 to the ground state is al-
ways to the ground-state hfs level 6S1/2F = 4, not to
the other ground-state hfs level 6S1/2F = 3. Therefore,
the magnetic sublevels of the hfs levels 6S1/2F = 4 and
6P3/2F

′ = 5 form a closed set, which is used for laser
cooling in magneto-optical traps [10].

We introduce the notation eM ′ and gM for the mag-
netic sublevels F ′M ′ and FM of the hfs levels F ′ and F ,
respectively. For l = 0,±1, the l spherical tensor com-
ponent of the dipole moment for the transition between
eM ′ and gM is given by [11]

d(l)
eM′gM

= (−1)I+J ′−M ′
〈J ′‖D‖J〉

√
(2F + 1)(2F ′ + 1)

×
{

J ′ F ′ I
F J 1

}(
F 1 F ′

M l −M ′

)
. (4)

Here the array in the curly braces is a 6j symbol, the
array in the parentheses is a 3j symbol, and 〈J ′‖D‖J〉 is
the reduced electric-dipole matrix element in the J basis.

The interaction of the multilevel atom with the classi-
cal coherent field is characterized by the Rabi frequencies

Ω(I)
eg =

1
h̄

(deg · E) =
1
h̄

∑

l=0,±1

(−1)ld(l)
eg E−l. (5)

Note that d
(l)
eg is nonzero only if l = Me − Mg = 0,±1.

Therefore, Ω(I)
eg is nonzero only if Me−Mg = 0,±1. Then,

we can rewrite expression (5) as Ω(I)
eg = (−1)ld

(l)
egE−l/h̄,

where l = Me−Mg = 0,±1. In terms of the Rabi frequen-
cies Ω(I)

eg , the Hamiltonian for the atom–field interaction
is given by

Hint = − h̄

2

∑

eg

(Ω(I)
eg σ(I)

eg + H.c.), (6)

where σ
(I)
eg = |e〉〈g|.

III. EQUATIONS OF MOTION FOR THE ATOM

The interaction between the atom and the evanescent
field affects not only the internal state but also the posi-
tion and velocity of the atom. In this section, we present
the basic equations of motion for the internal state and
center of mass of the atom.

A. Equations for the internal-state density matrix

We first consider the internal state of the atom. We
introduce the notation ρ(I) for the density operator of

the atomic internal state in the interaction picture. The
evolution of the matrix elements of ρ(I) is governed by
the generalized Bloch equations

ρ̇(I)
ekel

=
i

2

∑

j

(Ω(I)
ekgj

ρ(I)
gjel

− Ω(I)
gjel

ρ(I)
ekgj

)

− 1
2

∑

j

(γekejρ
(I)
ejel

+ γejelρ
(I)
ekej

),

ρ̇(I)
gkgl

= − i

2

∑

j

(Ω(I)
ejgl

ρ(I)
gkej

− Ω(I)
gkej

ρ(I)
ejgl

)

+
∑

i,j

γejeiglgkρ(I)
eiej

,

ρ̇(I)
gkel

= − i

2

∑

j

Ω(I)
gjel

ρ(I)
gkgj

+
i

2

∑

j

Ω(I)
gkej

ρ(I)
ejel

− iδρ(I)
gkel

− 1
2

∑

j

γejelρ
(I)
gkej

. (7)

Here δ = ω − ω0 is the detuning of the field frequency ω
from the atomic transition frequency ω0 = ωe − ωg. The
coefficients γ

(g)
ee′gg′ and γ

(g)
ee′ =

∑
g γ

(g)
ee′gg describes spon-

taneous emission into guided modes. The coefficients
γ

(r)
ee′gg′ and γ

(r)
ee′ =

∑
g γ

(r)
ee′gg describes spontaneous emis-

sion into radiation modes. The explicit expressions for
the spontaneous decay rates are given in Ref. [12].

To remove the dependences of the phases of the spheri-
cal tensor components El of the field envelope vector on z
and ϕ, we use the transformation El = Ele

−iβze−i(l+1)ϕ.
The explicit expressions for the transformed field ampli-
tudes El are given by

E−1 =
√

2 iN (1 − s)K0(qr),

E0 = N 2q

β
K1(qr),

E1 = −
√

2 iN (1 + s)K2(qr). (8)

We transform the Rabi frequencies as

Ωeg = Ω(I)
eg e−iβze−i(Mg−Me+1)ϕ =

1
h̄

∑

l=0,±1

(−1)ld(l)
eg E−l.

(9)
Since the field amplitudes El are independent of z and ϕ,
so are the Rabi frequencies Ωeg. To remove the depen-
dences of the phases of the decay coefficients γee′gg′ and
γee′ on z and ϕ, we use the transformation

Γee′gg′ = γee′gg′ei(Me−Me′ )ϕe−i(Mg−Mg′ )ϕ,

Γee′ = γee′ei(Me−Me′ )ϕ. (10)

The coefficients Γee′gg′ and Γee′ depend on r but not on
z and ϕ. We transform the density-matrix elements as

ρee′ = ρ
(I)
ee′e

i(Me−Me′ )ϕ,

ρgg′ = ρ
(I)
gg′e

i(Mg−Mg′ )ϕ,

ρge = ρ(I)
ge eiβzei(Mg−Me+1)ϕ. (11)
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Then, Eqs. (7) yield

ρ̇ekel =
i

2

∑

j

(Ωekgj ρgjel − Ωgjelρekgj )

− 1
2

∑

j

(Γekejρejel + Γejelρekej )

+ i(Mk − Ml)ϕ̇ρekel , (12a)

ρ̇gkgl = − i

2

∑

j

(Ωejglρgkej − Ωgkej ρejgl)

+
∑

i,j

Γejeiglgkρeiej

+ i(Mk − Ml)ϕ̇ρgkgl , (12b)

ρ̇gkel = − i

2

∑

j

Ωgjelρgkgj +
i

2

∑

j

Ωgkej ρejel

− 1
2

∑

j

Γejelρgkej

− i[δ − βż − (Mk − Ml + 1)ϕ̇]ρgkel . (12c)

Here Mj is a short notation for Mej and Mgj .
The expression in the last line of Eq. (12c) contains

the conventional axial Doppler shift

δaxial = βż (13)

and the azimuthal Doppler shift

δgkel

azimuth = (Mk − Ml + 1)ϕ̇. (14)

Meanwhile, Eqs. (12a) and (12b) show that the az-
imuthal motion of the atom leads the relative frequency
shifts

δekel

azimuth = δgkgl

azimuth = (Mk − Ml)ϕ̇ (15)

for the upper-sublevel pair {ek, el} and the lower-sublevel
pair {gk, gl}.

The axial Doppler shift (13) is a frequency shift that
would arise from a plane wave traveling with the propaga-
tion constant β along the z axis. The azimuthal Doppler
shift (14) is directly proportional to the quantum number
Mk − Ml + 1, which characterizes the change in angular
momentum of the atomic internal state. In particular,
the azimuthal Doppler shift is δgkel

azimuth = 0, ϕ̇, and 2ϕ̇
for Mk − Ml = −1, 0, and 1, respectively. This shift
is very similar to the azimuthal Doppler shift of a two-
level atom interacting with a Laguerre-Gaussian beam
[13]. The difference is that the former depends on the
quantum numbers of the atomic energy sublevels while
the latter depends on the orbital quantum number of the
light beam. The reason for this difference is the following:
The azimuthal Doppler shift of a transition is propor-
tional the azimuthal-phase factor of the field component
that causes the transition [13]. In the case considered
here, the azimuthal-phase factor takes the different val-
ues 0, 1, and 2 for the field components E−1, E0, and E1,

respectively [see Eqs. (2)]. Meanwhile, the angular mo-
mentum of each atomic energy sublevel is specified by its
quantum numbers F and M . These features, combined
with the angular-momentum conservation law and the
transition-selection rules, lead to the factor Mk −Ml + 1
in expression (14). In the case of a Laguerre-Gaussian
beam [13], the azimuthal-phase factor coincides with the
orbital angular number. This factor is the same for all
the three spherical tensor components of the field. Hence,
the azimuthal Doppler shift of an arbitrary transition in
the case of a Laguerre-Gaussian beam just depends the
orbital angular number. It does not depend on the quan-
tum numbers of the atomic levels at all [13].

B. Equations for the center-of-mass motion

We now consider the center-of-mass motion of the
atom. We perform a semiclassical treatment for this mo-
tion. In such a treatment, the center-of-mass motion is
governed by the force that is calculated from the quan-
tum internal state of the atom. The force of the light
field on the atom is defined by the formula

F = −〈∇Hint〉. (16)

Inserting Eq. (6) into Eq. (16) gives

F =
h̄

2

∑

eg

[(∇Ω(I)
eg )ρ(I)

ge + c.c.]. (17)

The axial component Fz of the force is a light pressure
force and is given by

Fz =
ih̄β

2

∑

eg

(Ω(I)
eg ρ(I)

ge − c.c.). (18)

The radial component Fr of the force is a gradient force
and is given by

Fr =
h̄

2

∑

eg

(
∂Ω(I)

eg

∂r
ρ(I)

ge + c.c.

)
. (19)

The azimuthal component Fϕ of the force is a light pres-
sure force and is given by

Fϕ =
ih̄

2r

[∑

eg

′
Ω(I)

eg ρ(I)
ge + 2

∑

eg

′′
Ω(I)

eg ρ(I)
ge − c.c.

]
. (20)

Here the notation
∑′

eg and
∑′′

eg mean the summations
under the conditions Me − Mg = 0 and Me − Mg = −1,
respectively.

According to Eq. (18), all the three types of tran-
sitions, with Me − Mg = −1, 0, or 1, can contribute
to the axial pressure force Fz. This force is related to
the recoil of photons with the axial wave vector βẑ. In-
deed, in a particular case where the atom is at rest and
the internal state ρ(I) of the atom is stationary, we have
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i
∑

g(Ω
(I)
eg ρ

(I)
ge − c.c.) =

∑
e′(γee′ρ

(I)
e′e + c.c.). Then, Eq.

(18) yields Fz = h̄βΓsc, where Γsc =
∑

ee′ γee′ρ
(I)
e′e is the

scattering rate of the atom.
According to Eq. (20), the transitions with Me−Mg =

0 and Me − Mg = −1 contribute to the azimuthal pres-
sure force Fϕ with the weight factors 1 and 2, respec-
tively. Meanwhile, the transitions with Me − Mg = 1
do not contribute to Fϕ at all. The weight factors 0, 1,
and 2 originate from the azimuthal-phase factors of the
field spherical tensor components E−1, E0, and E1, which
enable the transitions with Me − Mg = 1, 0, and −1,
respectively [see Eqs. (2)].

Unlike the forces Fz and Fϕ, the force Fr is deter-
mined by the gradient of the field. It is related to the
dynamical Stark shift of atomic energy levels. In a par-
ticular case where the field detuning δ is large compared
to the Rabi frequencies and the effect of the fiber on the
decay rates is negligible, we get Fr = −∂Uopt/∂r, where
Uopt = h̄δ

∑
eg |Ωeg|2/[4(2F +1)(δ2+γ2

0/4)] is the optical
potential with γ0 being the natural linewidth. It is clear
that Uopt is attractive or repulsive when the detuning δ
is negative or positive, respectively.

For convenience, we rewrite expressions (18)–(20) for
the components of the force of light using the density
matrix elements (11). The results are

Fz =
ih̄β

2

∑

eg

(Ωegρge − c.c.),

Fr =
h̄

2

∑

eg

(
∂Ωeg

∂r
ρge + c.c.

)
,

Fϕ =
ih̄

2r

∑

eg

[(Mg − Me + 1)Ωegρge − c.c.]. (21)

In addition to the force of light, the van der Waals force
from the fiber also acts on the atom when the latter is in a
close vicinity of the fiber surface. This material-induced
force is aligned along the radial direction and is given as
FvdW = −∂UvdW/∂r, where UvdW is the van der Waals
potential of the atom outside the fiber [5, 6, 14]. Note
that the van der Waals potential depends on the inter-
nal state of the atom. According to Ref. [15], the van
der Waals potential of a cesium atom in the excited state
6P3/2 is stronger than that in the ground state 6S1/2 by
a factor of 1.98. Consequently, when the atom is in a
close vicinity of the fiber surface, the van der Waals in-
teraction influences the transition frequency of the atom,
and the resulting frequency shift must be added to the
field detuning δ.

Driven by the force from the guided light and the van
der Waals force from the fiber, the classical motion of the
center of mass of the atom is described by the equations

mz̈ = Fz,

mr̈ = mrϕ̇2 + Fr + FvdW ,

mrϕ̈ = −2mṙϕ̇ + Fϕ. (22)

Here m is the mass of the atom.

The first equation in Eqs. (22) indicates that, due to
the pressure force Fz, the axial motion of the atom will
be either accelerated or decelerated. The second equation
in Eqs. (22) shows that the radial motion of the atom is
determined by the combined action of the gradient force
Fr, the van der Waals force FvdW, and the centrifugal
force

Fcf = mrϕ̇2 =
L2

z

mr3
. (23)

Here

Lz = mr2ϕ̇ (24)

is the z component of the orbital angular momentum of
the atom with respect to the fiber axis. In terms of Lz ,
the last equation in Eqs. (22) can be rewritten as

L̇z = Tz , (25)

where

Tz = rFϕ (26)

is the torque. This torque is produced by the azimuthal
component Fϕ of the force of light on the atom. It makes
Lz vary in time. Manipulating this torque, we can pro-
duce and control the rotational motion of the center of
mass of the atom around the fiber.

IV. NUMERICAL RESULTS

In this section, we perform numerical calculations for
the internal state and center-of-mass motion of the ce-
sium atom driven by the evanescent wave of a near-
resonant light field in a counterclockwise rotating fun-
damental guided mode of the nanofiber. The wavelength
λ of the guided light is tuned to the cesium D2 line wave-
length λ0 = 852 nm. The refractive indices of the fiber
and the vacuum clad are n1 = 1.45 and n2 = 1, re-
spectively. For calculations, we choose the fiber radius
a = 100 nm, which is small enough that the field can
penetrate to a distance of several times of a outside the
fiber (see Fig. 2). The chosen values of λ and a satisfy
very well the condition a/λ < 0.283, which is required
for trapping of atoms by the single-color technique [5].

In order to get insight into the specifics of the guided
light field outside the fiber, we first illustrate in Fig. 2
the spatial variations of the axial component Sz (solid
line) and the azimuthal component Sϕ (dashed line) of
the Poynting vector. The figure shows that Sϕ is smaller
than but comparable to Sz in the close vicinity of the
fiber surface. In addition, we observe that Sϕ decreases in
space faster than Sz does. In other words, Sz penetrates
into outside the fiber deeper than Sϕ does. We note
from the figure that, although the propagation power is
as small as 10 nW, the magnitudes of the Poynting vector
components Sz and Sϕ in the close vicinity of the fiber
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FIG. 2: Axial component Sz (solid line) and azimuthal com-
ponent Sϕ (dashed line) of the Poynting vector, normalized
to the saturation intensity Is = 1.1 mW/cm2. The fiber ra-
dius is a = 100 nm, the refractive indices of the fiber and the
vacuum clad are n1 = 1.45 and n2 = 1, respectively, the light
wavelength is λ = 852 nm, the light polarization is counter-
clockwise rotating, and the light propagation power is Pz = 10
nW.

surface are much larger than the saturation intensity Is =
2π2h̄cγ0/3λ3

0 = 1.1 mW/cm2 for the cesium D2 line [10].
Thus, a very small power can still produce a substantial
intensity in the close vicinity of the fiber surface. This
is to due the fact that the light field is confined in the
fundamental mode of the fiber.
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FIG. 3: Spatial dependences of the axial (a), azimuthal (b),
and radial (c) components of the force of light on a ce-
sium atom being at rest in its internal steady state outside a
nanofiber. The detuning of the field from the D2 line of the
atom is δ/2π = −50 MHz. Other parameters are as in Fig. 2.

We now calculate the force F of the guided light on the
cesium atom in the case where the atom is in its internal
steady state. We take into account the effect of the fiber
on the spontaneous decay characteristics of the atom [12].

However, for simplicity, we temporarily neglect the effect
of the van der Waals interaction on the atomic transition
frequency.

We begin with the case where the atom is at rest. We
derive the force by calculating the steady-state solution
for Eqs. (12) and inserting the result into Eqs. (21).

We illustrate in Fig. 3 the spatial dependences of the
axial, azimuthal, and radial components of the force of
light on the atom. The detuning of the field from the
D2 line of the atom is δ/2π = −50 MHz. Figures 3(a)
and 3(b) show that Fϕ is smaller than but comparable to
Fz in the close vicinity of the fiber surface, and that Fϕ

decreases in space faster than Fz does. Such behaviors
are reminiscent to the behaviors of Sz and Sϕ. Figure
3(c) shows that the radial component Fr, produced by a
negative detuning, is an attractive force.
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FIG. 4: Frequency dependences of the axial (a), azimuthal
(b), and radial (c) components of the force of light on a ce-
sium atom being at rest in its internal steady state outside
a nanofiber. The position of the atom is r/a = 4. Other
parameters are as in Fig. 2.

We illustrate in Fig. 4 the frequency dependences of
the axial, azimuthal, and radial components of the force
of light on the cesium atom. The position of the atom is
r/a = 4. Figures 4(a) and 4(b) show that Fϕ and Fz are
symmetric functions of δ, with peaks at δ = 0. Figure
4(c) shows that Fr is an antisymmetric function of δ,
and is attractive, zero, or repulsive for negative, zero, or
positive detuning δ, respectively.

Due to the Doppler effect and the radial variations of
the field, the force F of the guided light depends on the
velocity v = (vr , vϕ, vz) of the atom. It is easy to calcu-
late the dependences of F on vz and vϕ since these veloc-
ity components appear explicitly in Eqs. (12). However,
the dependence of F on vr is hidden by the radial depen-
dences of the Rabi frequencies and decay characteristics.
To calculate the effect of a small velocity vr on the force,
we perform a simple linearization procedure [10]. In this
procedure, we insert the formula ρ̇ = ∂ρ/∂t + vr∂ρ/∂r
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FIG. 5: Velocity dependences of the components of the force of light on a cesium atom in its internal steady state outside a
nanofiber. In the left column, vz is varied, but vϕ and vr are set to zero. In the central column, vϕ is varied, but vz and vr

are set to zero. In the right column, vr is varied, but vz and vϕ are set to zero. The velocities are given in units of the recoil
velocity vrecoil = h̄k/m = 3.52 mm/s. The detuning of the field from the D2 line of the atom is δ/2π = −50 MHz. The position
of the atom is r/a = 4. Other parameters are as in Fig. 2.

into Eqs. (12), drop the time partial derivative ∂ρ/∂t in
the steady-state regime, replace the operator ρ in the spa-
tial partial derivative ∂ρ/∂r by the steady-state solution
ρ0 for an atom at rest, and solve the resulting equations
for the density matrix ρ of a moving atom [10].

We find that the velocity dependence of the force of
the guided light on the atom is very sophisticated. It has
different specifics in different ranges of detuning, atomic
position, and propagation power. As an example, we
plot in Fig. 5 the components of F as functions of vz

(left column) vϕ = rϕ̇ (central column), and vr (right
column) for the parameters δ/2π = −50 MHz, r/a = 4,
and Pz = 10 nW.

The left column of Fig. 5 [parts (a), (d), and (g)] shows
that Fz and Fϕ have a resonant structure and Fr has a
dispersive behavior. These features are observed in the
vicinity of the point where the axial Doppler shift βvz

compensates the field detuning δ,
The central column of Fig. 5 [parts (b), (e), and

(h)] shows that the vϕ dependences of Fz, Fϕ, and Fr

possess several resonances. The reason is that, unlike
the axial Doppler effect, the azimuthal Doppler effect
produces various frequency shifts in Eqs. (12a)–(12c).

The strongest resonance, observed in the vicinity of
vϕ = 38000vrecoil, is due to the compensation of the field
detuning δ by the azimuthal Doppler shift δgkel

azimuth = ϕ̇
for the transitions with Ml = Mk. The weakest reso-
nance, observed in the vicinity of vϕ = 19000vrecoil, is
due to the compensation of the field detuning δ by the
azimuthal Doppler shift δgkel

azimuth = 2ϕ̇ for the transitions
with Ml = Mk − 1. The sharp resonance observed in
the vicinity of vϕ = 240vrecoil is related to effect of the
azimuthal Doppler shift on two-photon processes. Since
the effective two-photon Rabi frequency is of the form
ΩgeΩeg′/δ, the position of the sharp resonance in the
central column of Fig. 5 is directly proportional to the
field intensity and is inversely proportional to the field
detuning. Thus, the influence of vϕ on the force of the
guided light is more complicated than the influence of vz .

The linearity of the curves in the right column of Fig.
5 [parts (c), (f), and (i)] is not a real physical property.
It is simply an artifact resulting from the linearization
procedure, which was used to calculate the vr dependence
of the force [10].

When the field detuning is large enough, the motion of
the atom along the radial direction r can be described by
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an effective potential Urad = Uopt + Ucf + UvdW , which
is comprised of the optical potential Uopt, the centrifugal
potential Ucf = L2

z/2mr2, and the van der Waals poten-
tial UvdW [5, 6, 14]. We plot in Fig. 6 the potential Urad

for the parameters δ/2π = −50 MHz and Lz = 43h̄. As
seen from the figure, Urad has a deep minimum point at
the distance rm = 5.47a = 547 nm from the fiber axis,
not only well outside the fiber but also outside the range
of substantial action of the van der Waals force. We note
that, in the region of r ∼= a, the shape of Urad is similar
to that of the van der Waals potential UvdW . However,
in the region of r > 3a, UvdW is weak and, therefore,
Urad practically coincides with the sum of Uopt and Ucf .
The minimum of Urad is formed at a point where the
centrifugal force Fcf compensates the gradient force Fr.

When the detuning of the field is not too large and the
distance from the atom to the fiber is not too far, the
atom undergoes not only the gradient force but also the
axial and azimuthal pressure forces of light. The axial
force Fz and the azimuthal force Fϕ can accelerate or
decelerate the axial and azimuthal motions, respectively.
They can also affect the internal state through the axial
and azimuthal Doppler shifts, respectively. The torque
Tz, produced by Fϕ, leads to an increase or decrease of
the angular momentum of the atom. When we control
the torque Tz appropriately, we can, in principle, manip-
ulate the rotational motion of the atom.

When Tz is large, the angular momentum of the atom
and consequently the centrifugal force increase quickly.
The resulting imbalance between the centrifugal and gra-
dient forces will quickly accelerate the atom in the radial
direction. Then, the atom will quickly go away from the
fiber. Therefore, in order to produce a long-lived rota-
tional motion of the atom around the fiber, we need to
balance the centrifugal force by a gradient force from one
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FIG. 7: Three-dimensional trajectory (a) and trajectory map-
ping (b) of a cesium atom spinning around a nanofiber (shad-
owed area). The initial position and the initial velocity of
the atom are (x = 4a, y = 0, z = 0) and (vx = 0, vy =
14.6vrec, vz = 20vrec), respectively. The detuning is δ/2π =
−50 MHz. The evolution time is 300 µs. Other parameters
are as in Fig. 2.

hand and to minimize the torque from the other hand.
We plot in Fig. 7 the trajectory of a rotational motion

of the atom around the fiber. The parameters for the
fiber and the light field are as in Fig. 6. The atom is
initially positioned at a point near to the minimum point
of the potential Urad in Fig. 6. The initial velocity of the
atom is in the range of thermal velocities at 5 µK. The
transverse component of the initial velocity corresponds
to the angular momentum Lz = 43h̄, which is necessary
for producing the centrifugal component of the trapping
potential in Fig. 6. To get a good resolution for the
three-dimensional trajectory and trajectory mapping, the
evolution time is limited to 300 µs. The figure shows that
the atom is kept around the fiber in a rotational motion.

Figure 8 extends the duration of the atomic center-of-
mass motion of Fig. 7 for a longer time, namely 2 ms. As
seen, the atom can rotate many times around the fiber.
The time during which the atom is kept in the rotational
motion around the fiber is a macroscopic time (>2 ms).
The orbit of each loop is quasielliptical. With increasing
time, the orientation of the loop rotates slowly and the
size of the orbit becomes broader. The increase of the size
of the orbit is mainly due to the increase of the orbital
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FIG. 9: Axial angular momentum Lz of a spinning cesium
atom as a function of time. Other parameters are as in Fig. 7.

We plot in Fig. 9 the axial angular momentum Lz of
the atom as a function of time. The figure shows that
the angular momentum of the atom increases slowly with
time. Such increase of Lz is due to the action of the
azimuthal force Fϕ or, equivalently, the torque Tz. To
prolong the bounding of the atom to the fiber, we need
to minimize Tz . When Tz is large, Lz increases quickly
and, consequently, the atom quickly goes away from the
fiber.

V. SUMMARY

In conclusion, we have studied the action of the light-
induced force and torque on a cesium atom outside a
nanofiber. We have derived a set of coupled equations for
the internal state and center-of-mass motion of the atom.
In addition to the axial Doppler effect, the azimuthal
Doppler effect has been revealed. We have calculated
the pressure and gradient forces as functions of various
parameters, such as the distance between the atom and
the fiber, the detuning of the field, and the velocity of the
atom. We have demonstrated that the evanescent light
field in a circular fundamental guided mode can force
the atom to rotate around the nanofiber for a macro-
scopic time. The enhancement of the spontaneous decay
rates and the effect of the van der Waals potential have
been taken into account in our calculations. We have
found that, due to the action of the torque, the angular
momentum of the atom increases with increasing time.
Our work shows that nanofibers can be used to produce,
manipulate, and control the rotational motion of atoms.
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