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Patterned loading of a Bose-Einstein condensate into an optical lattice
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We have developed a technique to control the placement of atoms in an optical lattice by using a superlattice
comprising two separately manipulated, periodic optical potentials with commensurate periods. We demon-
strate selective loading of Bose-condensed87Rb atoms into every third site of a one-dimensional optical lattice.
Our technique provides atoms with wide separation yet tight confinement, useful properties for neutral-atom
implementations of quantum computing. Interference of atoms released from the optical lattice and optical
Bragg reflection from the atoms reveal the tight confinement and wide separation provided by the patterned
filling.
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Neutral atoms confined in an array of magnetic or opti
traps offer a scalable system for quantum information p
cessing. Several proposals@1–3# for providing the required
coherent control of the states of individual atoms and th
interactions involve optical lattices, periodic light-shift p
tentials produced by optical standing waves. Ideally, the
tice should be able to separate the atoms~qubits! by more
than an optical wavelength~to allow individual optical ad-
dressing! while confining each atom to a region muc
smaller than an optical wavelength. Tight confinement is
portant in most of these proposals both to increase the in
action strength between atoms in a site@1,2# and to decrease
the oscillation period, which sets the time scale for mov
atoms.

Here we experimentally demonstrate a technique to se
tively load atoms into the motional ground state of eve
third site of a one-dimensional~1D! optical lattice. This tech-
nique involves the sequential application of two independ
lattices whose spatial periods differ by a factor of 3. We u
the resulting ‘‘superlattice’’ to transfer atoms in a Bos
Einstein condensate~BEC! from the long-period lattice site
to the coinciding sites of the short-period lattice. The fin
state provides the tight confinement of the short-period
tice with a separation three times larger than the lattice
riod. Large separation between sites can also be achieve
using CO2 lasers@4# or arrays of optical dipole traps@5#, but
these techniques require much more laser power to pro
similar confinement. Patterned loading adds versatility to
atom-lattice architecture, and empty sites between atoms
in fact necessary for quantum computing proposals suc
Ref. @1#. While the present experiment involves many ato
in every third plane of a single 1D lattice site, the techniq
can be extended to other fractional fillings and to 3D lattic
which could have single atoms in individual sites.

We create each of the lattices by intersecting two la
beams at an angleu i ~see Fig. 1!. The lattice perioddi
5l/@2 sin(ui/2)#, wherel52p/k is the laser wavelength. In
this experiment, theu i are chosen such that the periods diff
by a factor of 3, resulting in parallel lattices with periods
dl51.5 mm ~long lattice! and ds50.5 mm ~short lattice!.
The light-shift potential is given by
1050-2947/2003/67~5!/051603~4!/$20.00 67 0516
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U~z!52
Ul

2
cos~2pz/dl !2

Us

2
cos~2pz/ds1f!. ~1!

We express U in units of the atomic recoil ER
5\2k2/(2M ), whereM is the atomic mass. Given the per
odic nature ofU(z), the eigenstates of this system are Blo
states. It is important that the two lattices be sufficien
commensurate that the local relative phase between the
lattices does not change significantly along the BEC.
achieve this with a ratiodl /ds of 2.99~1! @6#, as determined
by measuring the Talbot time@7# for each lattice, T
5\/eRi

, whereeRi
5(\2k2/2M )(l/di)

2 is the lattice recoil
energy.~Following diffraction from a brief application of lat-
tice light, the evolution of the wave function is periodic wit
periodT.!

The source of our lattice light is a Ti:sapphire laser d
tuned below theD2 line of Rb ~780 nm! by ;100 GHz.
Each beam has up to 3 mW in a waist (1/e2 radius) of

FIG. 1. ~a! Superlattice arrangement. Two pairs of laser bea
form two independent 1D lattices, with period ratio 3:1. A bea
incident at the Bragg condition for the long-lattice period probes
atomic density distribution. The plane containing the long-latt
beams~intersecting at 30.2°) is at 75° to the~horizontal! plane of
the short-lattice beams.~b! Example of time sequences for loadin
every third site of the short lattice. The lattices can be loaded
quentially or the long lattice can be removed while the short latt
is applied.~c! Schematic of atom localization for sequential loa
ing: in the long lattice~at 2 ms!, superlattice~4 ms!, and finally the
desired state in the short lattice~6 ms!.
©2003 The American Physical Society03-1
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250 mm, giving a depthUi,60ER and a spontaneous emi
sion rate,10 s21. Separate acousto-optic modulators allo
independent control of the two lattices. In order to ens
independent lattices, we detune them from each other by
MHz @8#. The relative position of the minima of the tw
lattices, determined byf, is not locked. Interferometric mea
surements showed this phase moved by less than a ra
during a given loading cycle (&10 ms duration!, although it
is random between cycles.

Our BECs are produced in a Ioffe-Pritchard trap every
s. In the first 4 s, 109 87Rb atoms from a Zeeman-slowe
beam are collected in a magneto-optical trap~MOT!. The
MOT magnetic fields are then turned off, the atoms coo
for 6 ms in optical molasses to;40 mK, optically pumped
into either theuF,mF&5u2,2& or uF,mF&5u1,21& hyperfine
state, and finally captured in a roughly spherical magn
trap whose strength is chosen to match the initial size of
atom cloud. Compression over 4 s produces a trap with axia
frequency foruF,mF&5u2,2& (u1,21& ) atoms ofnz512 Hz
~9 Hz! and radial frequency ofnr5380 Hz~270 Hz!. Forced
RF evaporation for 20 s cools the atoms below the B
transition producing a condensate with no discernible th
mal component. We then weaken the radial magnetic tra
nr536 Hz ~26 Hz!. A typical condensate has;23105 at-
oms and a Thomas-Fermi length@9# of 55 mm in the lattice
direction, occupying;110 ~37! sites of the short~long! lat-
tice.

Atom diffraction provides information about the confin
ment and periodicity of atoms in our lattice, and direct sp
tial imaging of the patterned state is not possible with o
current imaging resolution. After abruptly turning off the la
tice light (,1 ms) and magnetic trap (,200 ms) we allow
the atoms to freely expand for 22 ms before absorption
aging the resulting atomic interference@10#. This produces a
diffraction pattern that corresponds to the absolute squar
the Fourier transform of the BEC’s spatial wave function
the lattice, i.e., the momentum distribution. If the spat
wave function is periodic with periodd its momentum com-
ponents are restricted to multiples of6h/d. The width at
each site,Dz, determines the width of the envelope of th
momentum distribution,Dp'\/Dz.

Figure 2 shows atom-diffraction patterns obtained fro
loading atoms into the~a! long lattice and~b! short lattice. To
load an individual lattice we turn on the lattice beams with
half-Gaussian ramp, adiabatically with respect to vibratio
excitations within the lattice sites.~The time scales for adia
baticity are discussed below.! Comparing Fig. 2~a! with 2~b!,
the separations between the momentum peaks have a ra
1:3, corresponding to the 3:1 ratio of the respective latt
periods. The amplitudes of the momentum peaks for a sin
lattice are solely determined by the ratioUi /eRi

of the lattice

depth to the lattice recoil energy. SinceeRi
}1/di

2 , eRs
/eRl

59. The short lattice in Fig. 2~b! has nine times highe
intensity than the long lattice in Fig. 2~a!, so the diffraction
patterns have peaks with the same relative heights.
tighter confinement in the short lattice gives the three tim
wider diffraction pattern.
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To load every third site of the short lattice, we apply t
lattices to the BEC as shown in Fig. 1~b!. First, the long
lattice is slowly turned on to localize the atoms at its latti
sites. The short lattice is then slowly added, localizing
atoms at those of its lattice sites that are closest to the lon
period ones. These operations are adiabatic with respe
vibrational excitation and atoms go from the ground state
the long lattice to the ground state of the superlattice. Slo
turning off the long lattice leaves the atoms well localized
every third site of the short lattice. Alternatively, the loadin
procedure can be performed more quickly by simultaneou
removing the long lattice while turning on the short lattice

The final state in either procedure is an equal superp
tion of the three Bloch states in the first band of the sh
lattice with quasimomentumq50,61/3. This state leads to a
diffraction image like Fig. 2~c! ~which was taken using the
latter procedure!. As expected, the peak spacings for t
pattern-loaded short lattice are indicative of the long-latt
periodicity. The tight confinement of the short lattice pr
duces the broad envelope of the diffraction pattern, which
verified increases with short lattice depth. We obtain
same confinement and spontaneous emission rate
(dl /ds)

4581 times less power and (dl /ds)
259 times

smaller detuning than would be necessary using the l
lattice alone. In a practical quantum computing applicati
both the detuning and (dl /ds) would be larger than our cho
sen experimental parameters, further increasing the bene
the patterned loading technique.

Surprisingly, atom diffraction is insensitive to tunnelin
from occupied to empty sites: the evolution of the pattern
state consists entirely of phase evolution of the three qu

FIG. 2. Single shot absorption images and their line profi
showing atom-diffraction patterns fromu1,21& atoms loaded into
~a! the long lattice,~b! the short lattice, and~c! every third site of
the short lattice. The long- and short-lattice depths are roughly 2ER

and 20ER , respectively.@The narrowing of the diffraction peaks i
the result of a lensing effect due to the nonuniform intensity dis
bution of the lattice beams along the lattice, resulting in a quadr
phase variation of the wave function. This effect is most visible
loading sequence~c!, in which the phase is integrated for thre
times longer than in~a! and ~b!.#
3-2
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momentum components, which project onto completely
dependent plane-wave states. To verify that we have ind
loaded every third site, we use optical Bragg diffraction@11#
~reflection of a probe beam from a periodic array of atom!.
The reflected signal is proportional to the square of
Fourier-transform component of the atomic density at
spatial frequency satisfying the Bragg condition. We ap
the probe beam along one of the long-lattice beams and
tect along the other~see Fig. 1!, after switching off the lattice
beams. This geometry satisfies the first-order Bragg co
tion for density modulations with perioddl , with no reflec-
tion for density modulations of periodds .

We look for Bragg reflection in four situations: BEC onl
loading into the short lattice, loading into the long lattic
and loading into the short lattice with our patterned-load
procedure. We detect no reflection from either the BEC
the atoms loaded directly into the short lattice. When ato
are loaded into the long lattice we see substantial reflecti
~of order 100%, but a quantitative determination is difficu!.
We observe essentially the same signal from atoms pa
loaded into the short lattice@using either procedure shown i
Fig. 1~b!#, consistent with all of the atoms being loaded in
every third site. While it is difficult to quantify the fraction o
atoms put into every third site, we see in Fig. 3 that
square root of the Bragg reflection~proportional to the‘‘every
third’’ fraction! saturates with increasingUl . This saturation
and the comparable Bragg reflectivity of the long lattice a
pattern-loaded short lattice support the conclusion of co
plete loading into every third site.

The issue of adiabaticity is complicated for our superl
tice. We want the loading process to avoid any vibratio
excitations. On the other hand, our desired final state~only
every third short-lattice site occupied! is not the ground state
of the system~every lattice site occupied!. We must, in fact,
be fast~fully nonadiabatic! with respect to the time to tunne
between sites of the short lattice. To investigate adiabatic
we applied different sequences of lattice light to the BEC a
observed the resulting atom diffraction. The experiments
summarized in Fig. 4. If the atoms follow the ground sta
throughout a given sequence, they will return to the origi
BEC when all lattice light is removed. Such adiabaticity r

FIG. 3. Square root of the Bragg reflection,R1/2, from pattern-
loadedu2,2& atoms vs the maximumUl used in the sequential load
ing sequence.~The finalUs512ER .) The Bragg probe beam was
3-ms pulse of 1 mW in a 300-mm waist (1/e2), detuned seven
linewidths below resonance.
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quires that the time-dependent lattice HamiltonianH(t) sat-
isfy

\U̇ i

^mu
dH

dUi
u0&

~Em2E0!2
!1 ~2!

for all statesum& with energyEm coupled to the ground stat
by H(t) @12,13#. For a single lattice the most stringent r
quirement, which occurs atUi50, is \U̇ i!2A2eRi

2 ~as de-

termined by a band-structure calculation!. Figure 4~a! shows
the BEC after loading and unloading a 5ER-deep long lattice
with a Gaussian pulse (s50.3 ms!. We satisfy the adiabatic
criterion by a factor of 25, and the final state shows no s
of excitations. Experiments with a Na BEC reported grea
than 99% of the population loaded into the ground vib
tional state with a similar procedure@14#.

In case 4~b!, we adiabatically load the short lattice, app
the long lattice, and then reverse the procedure. This pro
is clearly not adiabatic, as evidenced by the moment
peaks associated with the long lattice. When the long lat
turns on, the period of the combined lattice changes fr
0.5 mm to 1.5mm. To adiabatically follow this change re
quires tunneling between short lattice sites, which is qu
slow (;60 ms for our 12ER deep lattice!.

In Fig. 4~c! we reversed the roles of the long and sh
lattices compared to Fig. 4~b!. While superficially similar to
Fig. 4~b!, Fig. 4~c! is by contrast adiabatic, as evidenced
the lack of diffraction peaks. Here the periodicity of the com
bined lattice remains 1.5mm throughout, and the atoms d
not have to tunnel to follow the ground state. This pictu
shows that we can adiabatically load the ground state of
superlattice. While the resolution in Fig. 4~c! does not allow
us a precise determination of the degree of adiabatic
band-structure calculations show that we satisfy the adia

FIG. 4. Investigation of adiabaticity for several loading s
quences~see text!. The schematic traces on the left indicate t
lattice depths as a function of time, where the peak depths areER

and 12ER for the long and short lattices. The images on the right
the corresponding absorption images, in which nonadiabaticity
pears as momentum components spaced ath/dl .
3-3
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ticity criterion @Eq. ~2!# by more than a factor of 25, imply
ing superlattice ground state population of more than 99.
@12#.

Figure 4~d! is the patterned-loading sequence followed
an adiabatic turn off of the short lattice. As expected
patterned state~a superposition of Bloch states! is not the
ground state. We note that the momentum distribution du
sudden shut off of the lattice in Fig. 2~c! represents the
plane-wave decomposition of the patterned wave function
the lattice, while Fig. 4~d! shows those plane-wave states th
adiabatically connect to the populated Bloch states in
lattice.

We have performed band-structure calculations, eval
ing the adiabatic criteria of Eq.~2!, to investigate the effec
of the relative phasef between the short and long lattice
which is uncontrolled in the experiment. We find that exce
for a very narrow range nearf5p, where the superlattice i
a periodic array of double well potentials, the loading s
quence produces the desired state with every third
sc

om

b
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loaded. The calculation also confirmed that the measu
temporal variations off do not significantly compromise th
loading process. Stabilizing the relative phase should
straightforward, and would allow the study of the doub
well system, for example.

The combination of patterned loading and optical Bra
reflection presents a unique opportunity for future investi
tion of tunneling from an occupied site to an empty site
process that should be inhibited by mean-field interacti
~‘‘macroscopic quantum self-trapping’’@15#!. Similar inhibi-
tion of tunnelling leads to the Mott insulator transition
observed in Ref.@16# in a uniformly filled 3D lattice. Com-
bining the Mott transition with our patterned loading tec
nique extended to 3D should provide a flexible system
the implementation of quantum computing with atoms in o
tical lattices.
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