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Abstract—We consider the propagation of an atomic beam in a quadrupole magnetic field under transverse
irradiation by a cooling laser field. The cooling laser field was chosen in the form of atwo-dimensional o*—o~
configuration. We show that the sub-Doppler resonancein the radiation force can be used to reduce the diameter
of the atomic beam to avalue on the order of 10 um. We establish that the simultaneous transverse cooling and
compression of the atomic beam allow its phase density to be increased to values of the order of 10-10=3. The
dipoleinteraction of an atom with the cooling and compressing laser field in aquadrupole magnetic field isana-
lyzed in terms of asimple (3 + 5)-level model atom. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The compression of atomic beams to increase their
phase density has been of considerable interest in
recent years. One of the effective schemes is the com-
pression of an atomic beam by acooling laser fieldin a
nonuniform magnetic field. Transverse cooling of an
atomic beam in apotential well produced by amagnetic
field causes the atomic oscillation amplitude in the
potential and, accordingly, the atomic beam diameter to
decrease. Previoudly, similar compression schemes
were experimentally studied for transverse Doppler [1]
and sub-Doppler [2] cooling of atomic beams. A deeper
compression can be achieved in principlethrough asig-
nificant reduction in the beam temperature by using
sub-Doppler cooling.

Attaining a high atomic beam phase density is of
independent interest, because atomic beams are widely
used in precision physica measurements, and of spe-
cia interest in designing continuous-wave atomic
lasers. The existing experimental schemes for attaining
guantum degeneracy in atomic ensembles are known to
be based on the evaporative cooling method [3, 4]. This
cooling method can be applied to high-density atomic
ensembles with alarge number of atoms and with alow
temperature. In all cases, the evaporative cooling
method has been applied to laser-precooled atomic
ensembles. All of the above three conditions in laser
cooling of atoms are difficult to satisfy: low tempera-
tures are reached at low atomic densities and, con-
versely, high densities prevent low temperatures from
being reached. Despite these difficulties, the method
has been effectively applied to atomic ensembles|ocal-
ized in magnetic or optical dipole traps. The long life-
time of the trapped atoms (on the order of 100 s) allows
guantum degeneracy to be achieved even at amoderate
initial phase density.

An atomic ensemble in the beam regimeis of inter-
est in that a continuous-wave atomic laser can be real-

ized. However, quantum degeneracy in a beam is more
difficult to achieve because of the limited preparation
time of the atomic ensemble determined by the time of
flight. Thus, for the evaporative cooling method to be
applicable, theinitial atomic phase density inthe beams
must be higher than that in the traps. Here, we consider
a laser-cooling scheme that alows us to significantly
increase the atomic beam phase density and, thereby,
makes the subsequent evaporative cooling of the beam
atoms possible to attain quantum degeneracy.

The effect of a magnetic field on the sub-Doppler
cooling of atoms has previously been studied both the-
oretically [5-8] and experimentally [9, 10]. A magnetic
field was used in experiments to extract atomic beams
from magnetooptical traps[11-13]. The structure of the
one-photon Doppler and two-photon sub-Doppler reso-
nances in a magnetic field was investigated in [14, 15].
The multicomponent velocity distribution of the atomic
cloud produced by the one- and two-photon resonances
in a magnetooptical trap (MOT) was studied in [6, 7].
The authors of [6, 10] pointed out that under certain
conditions, a magnetic field could even suppress the
sub-Doppler cooling.

Here, our goal is to obtain analytical estimates for
the maximum possible compression of an atomic beam
in a nonuniform magnetic field and to estimate the
atomic beam phase density reached in the case of trans-
verse sub-Doppler cooling and compression.

We analyze the transverse compression of an atomic
beam in a quadrupole axisymmetric magnetic field on
which acooling laser field wasimposed. The laser field
chosen as a two-dimensiona a*—o~ configuration pro-
duces transverse sub-Doppler cooling of the atomic
beam, while the magnetic field produces a two-dimen-
sional potential well across the atomic beam axis. The
dipoleinteraction of the atoms with a nonuniform mag-
netic field and with alaser electricfield isconsidered in
a simple (3 + 5)-level model atom with the tota
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MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 9

moments in the ground and excited states Fy = 1 and
F.= 2. In order that our results be applicable to real
experimental schemes, the Lande g factors for the
ground and excited states are assumed to be arbitrary.
Our analysisreveal sthat the sub-Doppler resonancesin
the radiation force can be used for the simultaneous
transverse cooling to sub-Doppler temperatures and the
effective compression of the atomic beam to a diameter
on the order of 10 pm.

2. THE COMPRESSION SCHEME
AND THE MODEL ATOM

The scheme for transverse sub-Doppler compres-
sion of an atomic beam in a quadrupole magnetic field
isshown in Fig. 1. In this scheme, four rectilinear cur-
rents | produce a magnetic field B = (B,, B) near the
electromagnetic quadrupole configuration axis whose
components are defined by the standard relations [16]

By = -ay, B,=az D
Here, aisthe magnetic field gradient on the quadrupole
magnetic configuration axis, which depends on the cur-
rents| and on the distance R from the configuration axis
to the currents.

The laser field was chosen in the form of two o*—0~
configurationsdirected along they and z axes. Each o*—
o~ configuration was composed of two counterpropa-
gating, circularly polarized laser waves. In the coordi-
nate system shown in Fig. 1, the electric field of the
laser o*—0~ configuration directed along they axisis

EW = %)[e{exp(i(ky—wt)) — el exp(—i(ky — ot))]
2
_%’[eiexp(i(kw wt)) —e’exp(—i (ky + wt))],

where

aretheunit circular vectorsthat correspond to the quan-
tizationy axis, k= wc isthe magnitude of the wave vec-
tor, and wisthe laser field frequency. The first and sec-
ond termsin Eq. (2) describe the waves with c* and o~
polarizations with respect to the quantization y axis,
respectively. The electric field of the laser c*—o~ con-
figuration directed along the z axis in the coordinate
system with the quantization z axisis

E@ = %[eiexp(i(kz—oot)) — e’ exp(—i(kz—wt))]
(©)
—%’[eiexp(i(kz+ wt)) —e“exp(—i(kz+ wt))],
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o? (a)
ot

Fig. 1. (@) The scheme for laser sub-Doppler compression
of an atomic beam in aquadrupole magnetic field: 1 incom-
ing atomic beam, 2 outgoing atomic beam, 3 cooling laser
beams, 4 electric currents producing a quadrupole magnetic
field B. (b) The distribution of magnetic field B in the yz
plane and the positions of the cooling laser beams.

where
1 .
el = F—(e,ie)
+ ,\/é X ey

aretheunit circular vectorsthat correspond to the quan-
tization z axis. Similar to configuration (2), thefirst and
second termsin Eq. (3) describe the waves with o* and
o~ polarizations with respect to the quantization z axis,
respectively.

Below, we estimate the basic parameters of the com-
pressed atomic beam in a simple one-dimensional
interaction model (see Fig. 2a). In this model, the
atomic beam is compressed by the 6*—o~ configuration
that propagates along the z axis. When the quantization
z axis is chosen, this laser configuration induces the
optical transitions in a (3 + 5)-level atom, shown in
Fig. 2b. It should be immediately noted that all our esti-
mates are also valid for the one-dimensional compres-
sion of the 0*—o~ configuration propagating along the y
axis.
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10 BALYKIN, MINOGIN

3. BASIC EQUATIONS

For the interaction scheme under consideration, the
Hamiltonian can be written as

H = Hy—p (B—(#/2M)A—d [E, (4)

where the Hamiltonian H, describes the quantized
atomic states in the absence of amagnetic field and the
second and last terms describe the dipole interaction of
an atom with the nonuniform magnetic field B = B,g,
and with the laser field E = E®, respectively.

A natural approach to describing the atomic motion
in the chosen schemeisto use the atomic density matrix
in the Wigner representation, p = p(r, p, t). Below, we
assume the density matrix p,s = [d|p|Bto be deter-
mined from the time-independent eigenfunctions of the
magnetic statesa and 3 = |F, m:LTheenergies E, and

E,,, of the atomic Hamiltonian proper,
Ha = Ho-n (B,

correspond to these eigenfunctions.

For alaser field composed of plane monochromatic
traveling waves with a frequency w close to the atomic
transition frequencies wy,, = (E,— E,)/%,

E=Y[E%xp(i(k, T —wt))
Z ®)

+ E*exp(—i (K r —wt))],
the equations of motion for the elements of the density

X

ot L o
N/ L\B /
B (a)

Gl N\~

Fig. 2. (a) The one-dimensional compression of an atomic
beam in the field of the laser 6*—0~ configuration propagat-
ing along the zaxis. The magnetic field is directed along the
z axis and the atomic beam propagates along the x axis.
(b) Zeeman energy levels for the (3 + 5)-level atom in the
coordinate system with the quantization z axis for positive
Zeeman shifts, wy > 0 and we > 0. The arrows indicate the

transitions induced by the 6*- and Tt-polarized laser waves.
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matrix in Wigner representation and in the rotating-
wave approximation can be written as[17, 18]

|hDa

+V_Dpkl(r p) = (Ex—E)pu(r.p)

a 1 . .
- z(dkm LE )pmﬁ, p —éﬁk%exp(lka 0 —iwt)

a 1 . .
+ Y (Ao (E)Pnd,  + Sk Jexp(ik, [T —iot)
(6)
. 1 . .
- z (dkm (E [bpml%a p+ éﬁk%exp(—”(a r + I(A)t)

+ 3 (A E* i, p - Sk Sexp(-ik, [T +iot)

+ih K| Fp(r, p)|IO)

wheredy, = [K|d|l Care the matrix elements of the atomic
dipole moment operator. All four sumsin Egs. (6) are
assumed to include terms that correspond only to posi-
tive atomic frequencies,

The first, second, third, and fourth sums include,
respectively, the terms with frequencies

Wm = %50’
o, - En;LE|>O’
o - Em}; 2
e EI;,LE”>O.

The first term in Egs. (6) describes the contributions
from the radiative relaxation operator I'.

Note that in Egs. (6), we omitted the small magne-
todipole forces

f, = 0o\ (Blaldar,

which play no significant role in the dynamics of the
atom.
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MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 11

Below, the Zeeman shifts of the magnetic states are
considered in the simplest linear approximation in
magnetic field strength. For the ground-state sublevels,

[Fg mgl—p [BIF g, m/J = pgg,B,mg; (7)
for the excited-state sublevels,
D:e! mel_u’ EBl Fel me[| = H BgeBzme' (8)

Here, g isthe Bohr magneton; g, and g, are the Lande
g factorsfor the ground and excited states, respectively;
Fo=1,m=-101F=2m=-2-10,1,2

Below, we give Egs. (6) for a (3 + 5)-level atom in
explicit form in the practically important case of
weakly saturated atomic transitions. In this case, it will
suffice to take into consideration the equations only for
the diagonal elements of the density matrix, for the
nondiagonal one-photon elements describing optical
coherences, and for one nondiagonal two-photon ele-
ment describing the coherence between the sublevels
0., and g, of the ground state g. Concurrently, we elim-
inate the explicit dependence on time and coordinate
from the equations by the following simple substitu-
tions:

Pg,e, = 09_1e_zexp(i wt +ikz),
Pge, = cgfleoexp(i wt —ikz),
Pge, = Ogye, EXP(iwt +ikz),

Pge, = Oge EXP(iL—ik2),
Pge, = Og,e,EXPIWL +ik2),
Pge, = Oge,EXP(iwt—ik2),

Oy 4 eXp(-2ikz).

pg—lgl = 919

After these substitutions, the eguations for the
atomic density matrix elements that describe the dipole
interaction of the (3 + 5)-level atom with the laser field
E = E®@ in anonuniform magnetic field B = B,g, in the
approximation of weak saturation are

d _ oM g™
apg—lg—l - IQ(G €0, 09 182 [( €0y 9190)

%(n)pmd n,

+Y[RPoMPE e, + Pon)PLTe, + o]

d _ IQ )
apgogo - 0

/\/é €19

=)

9081

(+) (+)
-0 + O-9190 - 09091)
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ao-goe-l - ﬁ(pgogo

+y jBrDo(n)pél’el+ Z0(n)pl, + Po(m)piaHdn,

d + + iQ,
ap9191 = IQ(O( ; ( L)+ _(0-((90231

€0, 9192) /\/é

=)
- GgleO)

+Y[E5PamPL + @ Pl +204mpl2fcn,

eef]
d . +
ape_ze_2 = IQ(oé_ie_z 2g 1) 2ype  ,€ 57
d _iQ, = o

Qo1 190) - y Pe 1€

apefﬁa - 72

d + +
apeoeo = /\/é él :eo ( péléo - p(eogh) 2y peoeo'

d

apele1 - T(O-goe1 elgo) - ypele1
d = |Q(0 -a, ) 2
dtpe2e2 0,8, e,0; Y Pee,:

q 9)
aog,leQ = Q(pe PP p(g 39

— (y - | ((L)g - Zwe - 61))09,1972’

d _ ot *)
ao-g_leo - /\/é(pg—lg—l 9191 peoeo)

- (y —i ((*)g - 6—1))0g_1e0’

d iQ, (+ - [
= (Pl = Ple) — (¥ + (0 +8)) T,

ao-goe1 = A/—(pgogo pe 46 ) (y_l(w -9 1))0-90el

d _ ) 4 6O
acgleo - [(pglgl 919_1

—(y+i(w +93,))o

)
- peoeo)

9.6’

d +
ao-glez = - Q(p9191 - p‘(i‘z‘)ez)

—(y +i(wg—20, +3.y))0

9,8’

do_ 0_(+)
a 90 ,\/6 €91

No. 1
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12 BALYKIN, MINOGIN

Above, we use the following notation for the density
matrix elements:

pab = |}lp(rv P, t)lb['r

5 1
= <ap%, p+ iﬁk,%‘b>,
s = Calp(r, p + nhk, t)[bd

where k = ke, and n isthe unit vector that specifies the
direction of the spontaneous photon emission. Thetotal
time derivativeis

d _o0 0

gt ~at Var
The Rabi frequency Q and the spontaneous decay rate
of the upper magnetic sublevels 2y are defined as

Mgy o Alde
2./5% 3 pd ]

where ||d|| is the reduced matrix element. The main, d,
and two Doppler-shifted, d.,, detunings are given by
therelations

0= W— W,

(10)

(11)

0, = W—uyxky, (12)

where v = v, isthe velocity component along the z axis.
The frequencies

Wy = Hgggaz/f, @, = Hggeaz/h (13)

define the Zeeman shifts of the magnetic sublevels,
which depend on the atom coordinate and which can
have any signs. The functions ®4(n) and ®(n) define
the angular anisotropy in spontaneous emission:
3 2

cDO‘(r]) - 16T[(l + nZ)'
where n, = cosB is the component of the unit vector n
along the quantization z axis. The integration in the
radiation arrival termsis performed over the directions
of spontaneous emission specified by the unit vector n,
d?n = sin6dode.

P,(n) = =(1-1d), (14

4. THE KINETIC EQUATION

The difference differential equations (9), which do
not include the explicit dependence on time and coordi-
nate, can be analyzed in a standard way [19]. If the
atom-field interaction time is much longer than the
spontaneous decay time, Ty, > Tgq = 1/2y, then the
momentum width of the density matrix elements can be
assumed to exceed the photon momentum #k. This
assumption, which always holds below, alows the
atomic density matrix elementsto be expanded interms
of powers of the photon momentum %k. Considering
below the equations expanded in terms of sequentially
increasing orders of the photon momentum 7k, we can

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

infer that the diagonal (p,,) and nondiagonal (o) den-
sity matrix elements are the functionals of the Wigner
distribution function w(r, p, t),

W= Pg,g,* (D Peg,),
wherea =-1,0,1andf=-2,-1,0, 1, 2.

The general structure of the functional dependence
can be directly determined from the structure of the
expanded equations:

(15)

0+ LRt + O

paa = 2 DW
+lﬁk(Q;a+...)a—W+...,
2 op,
(16)
1
Oap = %ﬁb"’éﬁksellb"'
+= ﬁk(Tab+ )g\[’)v+...,
where Rga, Ria, Qia, Sgb, S}m, T;b, ... are the

functions of momentum p (or velocity v = p/M), which
are determined by the solution procedure. By the defi-
nition of the distribution function (15), the unknown
diagonal functions satisfy the normalization conditions

Y Ris *Ree, = 1, (17)
Y Rig.* Ree, = 0, (18)
Y Qoo+ Qeye, = 0. (19)

Taking into account the structure of solution (16), we
can see from the expanded equations that the Wigner
function w(r, p, t) satisfies the closed equation. To
within the second order in photon momentum 7k, the
closed equation for the distribution function is the Fok-
ker—Planck equation:

ow ., o0w
E +Var (DIIW) (20)

apz(FW) * Z

where i = X, vy, z. The kinetic coefficients F and D;; in

Eq. (20) define the radiation force and the momentum
diffusion tensor:

F = ﬁkQ[i (S~ e, + S0~ S e,)

+ :/I_é(ioel - ilgo + 32_190 - %oe-l) (21)
+ I76(£-190 - S209-1 + io(h - Sg1eo)i|’
No. 1 2003



MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 13

D = #°K’y
1 1 1
x [aﬁaqgfzefz + éRg 1€ + é Ooeo + ZRglel * Rgzeg

2 1
+ GE%RS_@_I + éRgoeo + éRgleH}
(22)
+ Tl T;ez)

1o .2 240 +1 1
+ §6izh k Q |:| (Tg_le_z - Te_zg_l €0
+ I_ (Téoe—l - Tl

/\/é €19
i
(Mo T Too) |
In these equations, the coefficients a;, and a;; takeinto

account the angular anisotropy in spontaneous photon
emission,

1 1
+T Tgoel)

€9

+ T

018

al = J’d)o(n)nizdzn, aff = J' o (nn’dn.  (23)

In explicit form, the angular anisotropy coefficients are

3 2
agx = G;‘/y = T agz c’

10 5

) 1 (24)
Oy = Oy = = ay, = z

The force F and the diffusion tensor D; can be
explicitly determined from the solution of the steady-
state equationsthat follow from the expanded equations
for the atomic density matrix elements considered sep-
arately inthe zero and first ordersin photon momentum

#ik. The steady-state equations for the functions R2,

and S, as well as for QL, and T2, in the case of

weakly saturated transitions, are given in AppendicesA
and B.

5. FORCES ACTING ON AN ATOM

The radiation force that acts on an atom in the
scheme under consideration depends both on the veloc-
ity and on the coordinate of the atom. In the approxima:
tion of weak saturation, the one-photon optical pro-
cesses described by the coherences between the sublev-
elsg, and g, . ; and the two-photon processes described
by the coherences between the ground-state sublevels
g_; and g, contribute to the force.

Below, we consider the radiation force in the practi-
cally important case of large negative detunings (-0 > y),
where the radiation force produces the deepest sub-
Doppler cooling of an atomic beam [20, 21]. Restrict-
ing our analysis to low velocities (kv < y) and small
Zeeman shifts (||, |ea| <), we can derive the follow-
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F(O, v)/hky
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]
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I
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-50-40-30-20-10 0 10 20 30 40 50

kv/u

Fig. 3. Radiation force versus velocity at z= 0, the detuning

0 = -10y, and the saturation parameter G = 0.1 (solid line)

and 0.5 (dashed line). The sub-Doppler resonance line half-
widths g = 0.18y (solid line) and 0.90y (dashed line) corre-
spond to the chosen detuning and saturation parameter.

ing approximate expression for the radiation force near
the axis of the compressing configuration (z= 0), which
reduces to the sum of the forces due to one- and two-
photon processes (Fig. 3):

2 2
£, 1) = 21 O (88/85) + (kv /)*kv

11 2 2 0
0 1+ (kv/p) Id (25)
60 kv /9]
- =hky—————,
177 "1+ (kv/p)
where
2
_20% _ 1ddIEg
6_7_105ﬁy5 <0
is the dimensionless saturation parameter and
_ 1[Gyt 1 JZ?Q_
H= 4J373 B~ 243379 @0

is the sub-Doppler resonance halfwidth for |]> .

Under the same conditions, the force acting on a
static atom is also the sum of the forces due to one- and
two-photon processes (Fig. 4):

5, Gy
F(z 0) = —ﬂﬁky#

2
N (44/17) (3w, — W) + (8w, — 31y) (W,/H)
1+ (00g/p)?
0y
17771+ (wy/p)

Recall that the Zeeman shifts w, and w, are propor-
tiona to the z coordinate.

(28)
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F(z, 0)/fiky

0.002} k .
0.001F-._ i

0

-0.001

~0.002F .
1 1 1 '-, 1 1 1

1 1
-50-40-30-20-10 0 10 20 30 40 50
Z/lsD

Fig. 4. Radiation force versus coordinate at a zero velocity,
the detuning 6 = —10y, and the saturation parameter G =0.1
(solid line) and 0.5 (dotted line) for the Lande factors gy =

1/3 and g = 1/2. The value of | defined by (30) was cho-
sen as the scale length.

The broad parts of the velocity and coordinate
dependences of the radiation force are attributable to
the one-photon absorption (emission) weakly perturbed
by two-photon processes. In our case of large detunings
(I8]> y > W), the broad vel ocity dependence originates
from the two resonances of one-photon absorption
(emission) located at the velocities kv, = 0. The
broad spatial dependence of the radiation force origi-
nates from the one-photon resonances related to the
Zeeman shift frequencies.

The narrow resonancesin thefield are attributable to
two-photon processes. For an atom that movesin azero
magnetic field, i.e., at z= 0, the two-photon processes
are effective at two-photon resonance vel ocities

(wxkv)—(wFkv)=0,

i.e., at velocities v = 0. For a static atom (v = 0), the
two-photon processes are effective for

(w* wy) —(wF wy) =0,

i.e., for wy=0orforz=0 (Fig. 4).

The characteristic velocity scale of the changein the
force due to the sub-Doppler resonance is determined
by the characteristic velocity v = p/k, which for weak
saturation and for alarge negative detuning is

y f Gyy
sD 339 k’

The characteristic spatial scale of the change in the
force due to the sub-Doppler resonance is determined
by the length | on which the Zeeman ground-state

(29)
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sublevel splitting is equal to the two-photon resonance
width. For weak saturation and for a large negative
detuning, the condition w, = | specifiesthe scalelength

Al
IJnga.

For definiteness, we estimate the degree of beam
compression for ®Rb atoms that interact with laser
radiation on the 5°S,,(F = 3) — 5?P5,(F = 4) dipoletran-
sition at the wavelength A = 780 nm. In general, this
scheme is described by a (7 + 9)-level model atom.
However, since the higher order multiphoton processes
give small contributionsto the radiation force, asimple
(3 + 5)-level model can be used to estimate the main
effects. For the optical transition under consideration,
gy = V/3and g. = 1/2. If, for example, we choose the satu-
ration parameter G = 0.5 and the detuning d = —10y, then
the characteristic velocity interval is v = 2.1 cms™. For
a moderate magnetic field gradient, a = 10 G cm?, the
characteristic spatia scaleislg =50 pm.

IsD -

(30)

6. BEAM COMPRESSION
The radiation force (28) produces a potential well
across the atomic beam axis:
U2 = —IF(Z, 0)dz.

For large detunings (|8] > y) and for the Lande factors
gy = Y3 and g, = /2, this potentia well is described by
the approximate expression

15 Gykz 15ﬁGy
3
I?SIZ 88" 5°

176003 Pz
* N3+ BTGy G0

where we introduced the characteristic length on which
the Zeeman shift frequency is equal to the natural line
width,

U@ =

m

(31)

_ hy

fm = Hgd’

The shape of the potential well (31) near the bottom is

determined by the two-photon sub-Doppler resonance

and its wings are determined by the Doppler resonance

(Fig. 5). At the magnetic field gradient a = 10 G cm™,

the characteristic length for the transition in #Rb with

the natura line halfwidth y/2rt= 2.95 MHz under con-
siderationis z,= 2.1 mm.

The atomic oscillation frequency near the bottom of
the potential well where the sub-Doppler resonance is
effectiveis

1/2
_ Oym - 40 A
O T g0 172, %

(32)

(33)
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MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 15

where w, = %k?/2M isthe recoil frequency. At the same
detunings & = —10y and the magnetic field gradient a =
10 G cm™, the oscillation frequency for the chosen
transition with the characteristic recoil frequency
w, /2= 3.8 kHZz is w, = 400 Hz.

Let us now estimate the parameters of the com-
pressed atomic beam. For a negative detuning (5 < 0),
radiation force (25) reduces to the frictional force

F = -MBv

with the coefficient of friction 3, which at large detun-
ings (|3]> v, Q) isproportional to the recail frequency:

_ 120y
B= 7

The velocity dependence of the momentum diffu-
sion tensor also includes the two-phaoton sub-Doppler
resonance localized at zero velocity. For our purposes,
it will sufficeto use the diffusion coefficient D, at zero
velocity and zero coordinate, Dy = D_(0, 0). Thisvalue
of the diffusion coefficient, together with the coefficient
of friction 3, determines the atomic temperature near
the quadrupole configuration axis according to the
steady-state solution of the Fokker—Planck equation:

— DO
T= ME'
At large detunings (]3| > v, Q), the momentum diffu-
sion coefficient Dy is estimated as

(34)

2
= gghzkzyG—\g.

Do = 37

(35

Accordingly, the transverse velocity distribution of the
atomic beam near the quadrupole configuration axisis
described by the Maxwellian distribution with the char-
acteristic temperature
T = & = égﬁ_yG_v
MB  60kg [9]
The spatial distribution is described by the Boltzmann
distribution

(36)

_ nY@o

W(2) = const DaxpD kg0

Since the potential has the form (31), the beam size

near the bottom of the potential well depends only on

the saturation parameter G and on the characteristic

length z,,. For the chosen Lande factors, the beam width
is estimated as

)
Az = 8k TIMWR = %Gz—i“.

For detuning o = —10y, saturation parameter G = 0.5,
and magnetic field gradient a= 10 G cm™, the temper-
atureis 3 uK and the beam sizeis 18 um.

(37)

(38)
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Fig. 5. The potential well for an atom at the same parame-
tersasinFig. 4.
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It should be particularly emphasized that the above
estimates are also retained for the beam compression
along any other direction. Thus, in describing the com-
pression of an atomic beam along the y axis, substitut-
ing the laser field (2) for field (3) in the basic equations
does not change the above estimates. The estimates of
the compression for any other directions include addi-
tional geometrical factors on the order of unity.

The widths of the velocity and spatial distributions
determined above can be used to estimate the phase
density of the compressed atomic beam. We give an
estimate of the dimensionless phase density [22]:

N,h®
(ArAp)s’

(39)

where N, is the number of atoms in the beam and

(ArAp)? is the phase volume occupied by the atoms. In
the case of an atomic beam, it is convenient to express
the phase density in terms of the mean atomic density
n, and to separate out the widths of the atomic momen-
tum distribution along, Ap,, and across, Ap,, the beam
axis:

nah3
A
Ap (Apy)

The atomic density in the magnetic system under
consideration is limited by the dipole-dipole atomic
interaction, by the repulsive potential produced by scat-
tered laser radiation, and by the attractive potential pro-
duced by the absorption of |aser radiation. All thesefac-
tors were studied in reasonable detail, because they
play an important rolein magnetooptical traps[23-26].
The most important factor is the reabsorption of pho-
tons inside the atomic ensemble. Multiple photon reab-
sorption causes thefrictional and compressing forcesto

(40)
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decrease. A characteristic feature of an axisymmetric
magnetic system isitssmall cross section. This circum-
stance shows that the atomic medium can remain opti-
cally transparent in the transverse direction at a rela
tively high density. A standard estimate for the atomic
density n, = 1/oAz (where g isthe resonance absorption
cross section) and available data on the atomic density
in magnetooptical traps show that the maximum atomic
density in the beam islimited to a value on the order of
n, = 102 cm=3. If we take the realistic Doppler value of
Ap, = My/k for the width of the longitudinal momentum
distribution and the sub-Doppler value that corresponds
to the temperature of 3 uK for the width of the trans-
verse momentum distribution, we then obtain A =5 x
10 for the ®Rb atomic beam phase density.

7. CONCLUSION

Our analysis shows that the sub-Doppl er resonances
in the radiation force allow atomic beams to be com-
pressed to values on the order of several tens of
microns. Such a significant compression is, naturally,
possiblefor slow atomic beams where the time of flight
of the atomsis enough for the atomic temperature to be
reduced to the sub-Doppler value.

Thus, we found that an atomic beam in a nonuni-
form magnetic field could be compressed to a diameter
on the order of several tens of microns and the phase
density could be increased to a value on the order of
104-10-3. Such a high expected atomic phase density
in the compressed beam enabl es the subsequent evapo-
rative cooling of the atoms down to quantum degener-
acy for aredlistic length of the magnetic trapping sys-
tem [27]. In turn, the realization of this possibility may
allow a continuous-wave atomic laser to be produced.

APPENDIX A
Below, we give the system of equations that defines
the steady-state values of the functions Rj , = N,

o _ .
Re,e _nwandsgb_cab-

ZN"+Zn" =1,

iQ
Cg-le-z) +— (Ceog_l - Cg_leo)

NG

+V%n—2+ n_+ %nq% =0,

(A.2)

iQ (ce_zg_1 -

+C

€0y Cgoel)

1Q
72 ( Ceflgo - Cgoe71

4
+yHL 300+ nd = 0,
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. iQ
1Q (Cezgl - Cglez) + 76(Ceog1 - Cgleo)

+y%‘no+ n, + an% =0,

iQ(c Ce,g,) —2YN, = 0,

9.1€,

iQ
72((:90971 N Ce—lgO) - 2yn_1 =0

iQ
,\—/_E(Cg_leo - Ceog_l + Cgleo - Ceogl) - 2vno = O’
o (A2)
|
j/’é(cgoel - Ce190) - 2yn1 =0,
1Q(Cge,—Ceyq) —2YN, = 0,
1Q(N, —N_y) = (Y +i(d; —y + 2w,))cy o, = O,

1Q :

76(N—1 + Cg7191 - nO) + (y + I(6—1 _("-)g))cgfle0 =0,
iQ - —
TZ(NO_n—l) + (y + |(61 + (*)e))cgoe_l =0,
iQ - -
TZ(NO_nl) +(y+i(d1—w))Cqe = 0,

iQ

(Nl + Cglgfl - nO) + (y + |(61 + (’Og))cgleo = 0'

NG

IQ(Ny—ny) + (Y +i(04 + 0y —2W,))Cye, = O,

9:€,
iQ
NG

Equations (A.2) were derived from Egs. (9) considered
in the zero order in photon momentum. Normalization
condition (17) was written as the first equation of sys-
tem (A.1).

(Ceyg, ~Cgue) T 21(wg tkv)cg 4 = 0.

APPENDIX B

Below, we give the system of equationsfor the func-
tions Qéugu = Qow Qtleuea = s and Tib = tab:

>Qut>da =0,

(B.1)
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iQ

i g)(tefzg,l - tg,le,z) + A/é(teogfl - tgf1eo)

1 .
+ V%Q—Z Tyt éqq% = IQ(Cefzgfl - Cgflefz)
iQ
- TG(Ceogl - Cgfleo) —f N—l’
iQ 4 0
72(te-190 - tgoe-l + te1go - 1:90‘51) + VB:L:L + éqo + QID

_iQ
- /\—/_E(Ce—lgo - Cgoe-l - Ce190 + Cgoel) —f NO’

. iQ
IQ(tezgl _tg1ez) + 76(1:8091 _tgleo) + V%QO + a, + 2%%

. iQ
= IQ(Cglez _Cezgl) + A/_é(ceogl _Cgleo) —f Ny,

17
iQ

ﬁ(ql = Qo) = (Y +1 (34— We))tge,

iQ
= _72(N0+n1)_fcg0e11
B (o Qumty g ) — (Y +i(8; + W)t
,\/6 0 1 0:9.1 1 9/779:&

9.6’

iQ
= r/_(—S(N1+ Ng—Cyq.)—fC

1Q(02 = Qy) = (Y +1(34 + Wy —2we)) g e,
= _|Q(Nl + n2) - fcglez’
%(teogl_tgleo) +2i (wg + kv)tgflgl

7

_io

NG

(Ceyg, + Cge,) — FCq g,

Equations (B.2) were derived from Egs. (9) considered

iQ (tgfle,z - te,zg,l) - ZVQ—z
= 1Q(Ce g, —Cqe,) — Ny,

iQ iQ

in the first order in photon momentum. The first equa-
tion of system (B.1) is normalization condition (19).
The quantity f = F/#ky isthe normalized force.
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