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Abstract—We consider the propagation of an atomic beam in a quadrupole magnetic field under transverse
irradiation by a cooling laser field. The cooling laser field was chosen in the form of a two-dimensional σ+–σ–

configuration. We show that the sub-Doppler resonance in the radiation force can be used to reduce the diameter
of the atomic beam to a value on the order of 10 µm. We establish that the simultaneous transverse cooling and
compression of the atomic beam allow its phase density to be increased to values of the order of 10–4–10–3. The
dipole interaction of an atom with the cooling and compressing laser field in a quadrupole magnetic field is ana-
lyzed in terms of a simple (3 + 5)-level model atom. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The compression of atomic beams to increase their

phase density has been of considerable interest in
recent years. One of the effective schemes is the com-
pression of an atomic beam by a cooling laser field in a
nonuniform magnetic field. Transverse cooling of an
atomic beam in a potential well produced by a magnetic
field causes the atomic oscillation amplitude in the
potential and, accordingly, the atomic beam diameter to
decrease. Previously, similar compression schemes
were experimentally studied for transverse Doppler [1]
and sub-Doppler [2] cooling of atomic beams. A deeper
compression can be achieved in principle through a sig-
nificant reduction in the beam temperature by using
sub-Doppler cooling.

Attaining a high atomic beam phase density is of
independent interest, because atomic beams are widely
used in precision physical measurements, and of spe-
cial interest in designing continuous-wave atomic
lasers. The existing experimental schemes for attaining
quantum degeneracy in atomic ensembles are known to
be based on the evaporative cooling method [3, 4]. This
cooling method can be applied to high-density atomic
ensembles with a large number of atoms and with a low
temperature. In all cases, the evaporative cooling
method has been applied to laser-precooled atomic
ensembles. All of the above three conditions in laser
cooling of atoms are difficult to satisfy: low tempera-
tures are reached at low atomic densities and, con-
versely, high densities prevent low temperatures from
being reached. Despite these difficulties, the method
has been effectively applied to atomic ensembles local-
ized in magnetic or optical dipole traps. The long life-
time of the trapped atoms (on the order of 100 s) allows
quantum degeneracy to be achieved even at a moderate
initial phase density.

An atomic ensemble in the beam regime is of inter-
est in that a continuous-wave atomic laser can be real-
1063-7761/03/9601- $24.00 © 20008
ized. However, quantum degeneracy in a beam is more
difficult to achieve because of the limited preparation
time of the atomic ensemble determined by the time of
flight. Thus, for the evaporative cooling method to be
applicable, the initial atomic phase density in the beams
must be higher than that in the traps. Here, we consider
a laser-cooling scheme that allows us to significantly
increase the atomic beam phase density and, thereby,
makes the subsequent evaporative cooling of the beam
atoms possible to attain quantum degeneracy.

The effect of a magnetic field on the sub-Doppler
cooling of atoms has previously been studied both the-
oretically [5–8] and experimentally [9, 10]. A magnetic
field was used in experiments to extract atomic beams
from magnetooptical traps [11–13]. The structure of the
one-photon Doppler and two-photon sub-Doppler reso-
nances in a magnetic field was investigated in [14, 15].
The multicomponent velocity distribution of the atomic
cloud produced by the one- and two-photon resonances
in a magnetooptical trap (MOT) was studied in [6, 7].
The authors of [6, 10] pointed out that under certain
conditions, a magnetic field could even suppress the
sub-Doppler cooling.

Here, our goal is to obtain analytical estimates for
the maximum possible compression of an atomic beam
in a nonuniform magnetic field and to estimate the
atomic beam phase density reached in the case of trans-
verse sub-Doppler cooling and compression.

We analyze the transverse compression of an atomic
beam in a quadrupole axisymmetric magnetic field on
which a cooling laser field was imposed. The laser field
chosen as a two-dimensional σ+–σ– configuration pro-
duces transverse sub-Doppler cooling of the atomic
beam, while the magnetic field produces a two-dimen-
sional potential well across the atomic beam axis. The
dipole interaction of the atoms with a nonuniform mag-
netic field and with a laser electric field is considered in
a simple (3 + 5)-level model atom with the total
003 MAIK “Nauka/Interperiodica”
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moments in the ground and excited states Fg = 1 and
Fe = 2. In order that our results be applicable to real
experimental schemes, the Lande g factors for the
ground and excited states are assumed to be arbitrary.
Our analysis reveals that the sub-Doppler resonances in
the radiation force can be used for the simultaneous
transverse cooling to sub-Doppler temperatures and the
effective compression of the atomic beam to a diameter
on the order of 10 µm.

2. THE COMPRESSION SCHEME
AND THE MODEL ATOM

The scheme for transverse sub-Doppler compres-
sion of an atomic beam in a quadrupole magnetic field
is shown in Fig. 1. In this scheme, four rectilinear cur-
rents I produce a magnetic field B = (Bx, By) near the
electromagnetic quadrupole configuration axis whose
components are defined by the standard relations [16]

(1)

Here, a is the magnetic field gradient on the quadrupole
magnetic configuration axis, which depends on the cur-
rents I and on the distance R from the configuration axis
to the currents.

The laser field was chosen in the form of two σ+–σ–

configurations directed along the y and z axes. Each σ+–
σ– configuration was composed of two counterpropa-
gating, circularly polarized laser waves. In the coordi-
nate system shown in Fig. 1, the electric field of the
laser σ+–σ– configuration directed along the y axis is

(2)

where

are the unit circular vectors that correspond to the quan-
tization y axis, k = ω/c is the magnitude of the wave vec-
tor, and ω is the laser field frequency. The first and sec-
ond terms in Eq. (2) describe the waves with σ+ and σ–

polarizations with respect to the quantization y axis,
respectively. The electric field of the laser σ+–σ– con-
figuration directed along the z axis in the coordinate
system with the quantization z axis is

(3)

By ay, Bz– az.= =

E y( ) = 
E0

2
----- e+

y i ky ωt–( )( )exp e–
y –i ky ωt–( )( )exp–[ ]

–
E0

2
----- e+

y i ky ωt+( )( )exp e–
y –i ky ωt+( )( )exp–[ ] ,

e±
y 1

2
------- ez iex±( )+−=

E z( ) E0

2
----- e+

z i kz ωt–( )( )exp e–
z –i kz ωt–( )( )exp–[ ]=

–
E0

2
----- e+

z i kz ωt+( )( )exp e–
z –i kz ωt+( )( )exp–[ ] ,
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where

are the unit circular vectors that correspond to the quan-
tization z axis. Similar to configuration (2), the first and
second terms in Eq. (3) describe the waves with σ+ and
σ– polarizations with respect to the quantization z axis,
respectively.

Below, we estimate the basic parameters of the com-
pressed atomic beam in a simple one-dimensional
interaction model (see Fig. 2a). In this model, the
atomic beam is compressed by the σ+–σ– configuration
that propagates along the z axis. When the quantization
z axis is chosen, this laser configuration induces the
optical transitions in a (3 + 5)-level atom, shown in
Fig. 2b. It should be immediately noted that all our esti-
mates are also valid for the one-dimensional compres-
sion of the σ+–σ– configuration propagating along the y
axis.

e±
z 1

2
------- ex iey±( )+−=

σ–

σ–

σ+

σ+

z y

x

R

1
2

3

(a)

4

3

σ–z
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σ+
(b)

y

σ+ σ–

Fig. 1. (a) The scheme for laser sub-Doppler compression
of an atomic beam in a quadrupole magnetic field: 1 incom-
ing atomic beam, 2 outgoing atomic beam, 3 cooling laser
beams, 4 electric currents producing a quadrupole magnetic
field B. (b) The distribution of magnetic field B in the yz
plane and the positions of the cooling laser beams.

B
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3. BASIC EQUATIONS

For the interaction scheme under consideration, the
Hamiltonian can be written as

(4)

where the Hamiltonian H0 describes the quantized
atomic states in the absence of a magnetic field and the
second and last terms describe the dipole interaction of
an atom with the nonuniform magnetic field B = Bzez

and with the laser field E = E(z), respectively.
A natural approach to describing the atomic motion

in the chosen scheme is to use the atomic density matrix
in the Wigner representation, ρ = ρ(r, p, t). Below, we
assume the density matrix ραβ = 〈α|ρ|β〉 to be deter-
mined from the time-independent eigenfunctions of the
magnetic states α and β = |F, mF〉 . The energies  and

 of the atomic Hamiltonian proper,

correspond to these eigenfunctions.
For a laser field composed of plane monochromatic

traveling waves with a frequency ω close to the atomic
transition frequencies ωmn = (Em – En)/",

(5)

the equations of motion for the elements of the density

H H0 m B "
2/2M( )∆– d E,⋅–⋅–=

Eem

Egm

Ha H0 m B,⋅–=

E Ea i ka r⋅ ωt–( )( )exp[
a

∑=

+ Ea∗ i kar ωt–( )–( )exp ] ,

σ+ σ–

z

B

x

e–2
e–1

e0
e1

e2

σ–

σ–

σ–

σ+ σ+ σ+

g–1
g0

g1
ωg

ωe

(a)

(b)

Fig. 2. (a) The one-dimensional compression of an atomic
beam in the field of the laser σ+–σ– configuration propagat-
ing along the z axis. The magnetic field is directed along the
z axis and the atomic beam propagates along the x axis.
(b) Zeeman energy levels for the (3 + 5)-level atom in the
coordinate system with the quantization z axis for positive
Zeeman shifts, ωg > 0 and ωe > 0. The arrows indicate the

transitions induced by the σ±- and π-polarized laser waves.
JOURNAL OF EXPERIMENTAL
matrix in Wigner representation and in the rotating-
wave approximation can be written as [17, 18]

(6)

where dkl = 〈k |d |l 〉  are the matrix elements of the atomic
dipole moment operator. All four sums in Eqs. (6) are
assumed to include terms that correspond only to posi-
tive atomic frequencies,

The first, second, third, and fourth sums include,
respectively, the terms with frequencies

The first term in Eqs. (6) describes the contributions
from the radiative relaxation operator Γ.

Note that in Eqs. (6), we omitted the small magne-
todipole forces

which play no significant role in the dynamics of the
atom.

i"
t∂

∂ v
r∂

∂
+ 

  ρkl r p,( ) Ek El–( )ρkl r p,( )=

– dkm Ea⋅( )ρml r p
1
2
---"ka–, 

  ika r⋅ iωt–( )exp
a m,
∑

+ dnl Ea⋅( )ρkn r p
1
2
---"ka+, 

  ika r⋅ iωt–( )exp
a n,
∑

– dkm Ea∗⋅( )ρml r p
1
2
---"ka+, 

  –ika r⋅ iωt+( )exp
a m,
∑

+ dnl Ea∗⋅( )ρkn r p
1
2
---"ka–, 

  –ika r⋅ iωt+( )exp
a n,
∑

+ i" k Γρ r p,( ) l〈 〉 ,

ωpq

Ep Eq–
"
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ωkm
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"
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En El–
"

---------------- 0,>=
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Em Ek–
"
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ωln

El En–
"

---------------- 0.>=

fα ∂ α m B⋅ α〈 〉 /∂r,=
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Below, the Zeeman shifts of the magnetic states are
considered in the simplest linear approximation in
magnetic field strength. For the ground-state sublevels,

(7)

for the excited-state sublevels,

(8)

Here, µB is the Bohr magneton; gg and ge are the Lande
g factors for the ground and excited states, respectively;
Fg = 1, mg = –1, 0, 1; Fe = 2, me = –2, –1, 0, 1, 2.

Below, we give Eqs. (6) for a (3 + 5)-level atom in
explicit form in the practically important case of
weakly saturated atomic transitions. In this case, it will
suffice to take into consideration the equations only for
the diagonal elements of the density matrix, for the
nondiagonal one-photon elements describing optical
coherences, and for one nondiagonal two-photon ele-
ment describing the coherence between the sublevels
g−1 and g1 of the ground state g. Concurrently, we elim-
inate the explicit dependence on time and coordinate
from the equations by the following simple substitu-
tions:

After these substitutions, the equations for the
atomic density matrix elements that describe the dipole
interaction of the (3 + 5)-level atom with the laser field
E = E(z) in a nonuniform magnetic field B = Bzez in the
approximation of weak saturation are

Fg mg –m B⋅ Fg mg,,〈 〉 µ BggBzmg;=

Fe me –m B⋅ Fe me,,〈 〉 µ BgeBzme.=

ρg 1– e 2–
σg 1– e 2–

iωt ikz+( ),exp=

ρg 1– e0
σg 1– e0

iωt ikz–( ),exp=

ρg0e 1–
σg0e 1–

iωt ikz+( ),exp=

ρg0e1
σg0e1

iωt ikz–( ),exp=

ρg1e0
σg1e0

iωt ikz+( ),exp=

ρg1e2
σg1e2

iωt ikz–( ),exp=

ρg 1– g1
σg 1– g1

2ikz–( ).exp=

td
d ρg 1– g 1–

iΩ σe 2– g 1–

–( ) σg 1– e 2–

–( )–( ) iΩ
6

------- σe0g 1–

+( ) σg 1– e0

+( )–( )+=

+ γ 2Φσ n( )ρe 2– e 2–

n( ) Φπ n( )ρe 1– e 1–

n( ) 1
3
---Φσ n( )ρe0e0

n( )+ + 
  n2 ,d∫

td
d ρg0g0

iΩ
2

------- σe 1– g0

–( ) σg0e 1–

–( )– σe1g0

+( ) σg0e1

+( )–+( )=
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+ γ Φσ n( )ρe 1– e 1–
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d ρe 1– e 1–

iΩ
2

------- σg0e 1–

+( ) σe 1– g0

+( )–( ) 2γρe 1– e 1–
,–=

td
d ρe0e0

iΩ
6

------- σg 1– e0

–( ) σe0g 1–

–( )– ρg1e0

+( ) ρe0g1

+( )–+( ) 2γρe0e0
,–=

td
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–
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2
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------- ρg1g1
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12 BALYKIN, MINOGIN
Above, we use the following notation for the density
matrix elements:

where k = kez and n is the unit vector that specifies the
direction of the spontaneous photon emission. The total
time derivative is

(10)

The Rabi frequency Ω and the spontaneous decay rate
of the upper magnetic sublevels 2γ are defined as

(11)

where ||d|| is the reduced matrix element. The main, δ,
and two Doppler-shifted, δ±1, detunings are given by
the relations

(12)

where v  = v z is the velocity component along the z axis.
The frequencies

(13)

define the Zeeman shifts of the magnetic sublevels,
which depend on the atom coordinate and which can
have any signs. The functions Φσ(n) and Φπ(n) define
the angular anisotropy in spontaneous emission:

(14)

where nz = cosθ is the component of the unit vector n
along the quantization z axis. The integration in the
radiation arrival terms is performed over the directions
of spontaneous emission specified by the unit vector n,
d2n = sinθdθdφ.

4. THE KINETIC EQUATION

The difference differential equations (9), which do
not include the explicit dependence on time and coordi-
nate, can be analyzed in a standard way [19]. If the
atom–field interaction time is much longer than the
spontaneous decay time, τint @ τsp = 1/2γ, then the
momentum width of the density matrix elements can be
assumed to exceed the photon momentum "k. This
assumption, which always holds below, allows the
atomic density matrix elements to be expanded in terms
of powers of the photon momentum "k. Considering
below the equations expanded in terms of sequentially
increasing orders of the photon momentum "k, we can

ρab a ρ r p t, ,( ) b〈 〉 ,=

ρab
±( ) a ρ r p

1
2
---"k± t, , 

  b ,=

ρab
n( ) a ρ r p n"k+ t, ,( ) b〈 〉 ,=

td
d

t∂
∂

v
r∂

∂
.+=

Ω
d E0

2 5"
--------------, 2γ Wsp

4
3
---

d 2ω0
3

"c3
----------------,= = =

δ ω ω0, δ 1±– ω ω0– kv ,±= =

ωg µBggaz/", ωe µBgeaz/"= =

Φσ n( )
3

16π
--------- 1 nz

2+( ), Φπ n( )
3

8π
------ 1 nz

2–( ),= =
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infer that the diagonal (ρaa) and nondiagonal (σab) den-
sity matrix elements are the functionals of the Wigner
distribution function w(r, p, t),

(15)

where α = –1, 0, 1 and β = –2, –1, 0, 1, 2.

The general structure of the functional dependence
can be directly determined from the structure of the
expanded equations:

(16)

where , , , …, , , , … are the
functions of momentum p (or velocity v = p/M), which
are determined by the solution procedure. By the defi-
nition of the distribution function (15), the unknown
diagonal functions satisfy the normalization conditions

(17)

(18)

(19)

Taking into account the structure of solution (16), we
can see from the expanded equations that the Wigner
function w(r, p, t) satisfies the closed equation. To
within the second order in photon momentum "k, the
closed equation for the distribution function is the Fok-
ker–Planck equation:

(20)

where i = x, y, z. The kinetic coefficients F and Dii in
Eq. (20) define the radiation force and the momentum
diffusion tensor:

(21)

w ρgα gα∑ ρeβeβ∑( ),+=

ρaa Raa
0 1

2
---"kRaa

1 …+ + 
  w=

+
1
2
---"k Qaa

1 …+( ) ∂w
∂ pz

-------- …,+

σab Sab
0 1

2
---"kSab

1 …+ + 
  w=

+
1
2
---"k Tab

1 …+( ) ∂w
∂ pz

-------- …,+

Raa
0 Raa

1 Qaa
1 Sab

0 Sab
1 Tab

1

Rgα gα

0 Reβeβ

0+∑ 1,=

Rgα gα

1 Reβeβ

1+∑ 0,=

Qgα gα

1 Qeβeβ

1+∑ 0.=

∂w
∂t
------- v

∂w
∂r
-------+

pz∂
∂

Fw( ) ∂2

∂pi
2

--------- Diiw( ),∑+–=

F "kΩ i Sg1e2

0 Se2g1

0– Se 2– g 1–

0 Sg 1– e 2–

0–+( )=

+
i

2
------- Sg0e1

0 Se1g0

0– Se 1– g0

0 Sg0e 1–

0–+( )

+
i

6
------- Sg 1– e0

0 Se0g 1–

0– Se0g1

0 Sg1e0

0–+( ) ,
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(22)

In these equations, the coefficients  and  take into
account the angular anisotropy in spontaneous photon
emission,

(23)

In explicit form, the angular anisotropy coefficients are

(24)

The force F and the diffusion tensor Dii can be
explicitly determined from the solution of the steady-
state equations that follow from the expanded equations
for the atomic density matrix elements considered sep-
arately in the zero and first orders in photon momentum

"k. The steady-state equations for the functions 

and , as well as for  and  in the case of
weakly saturated transitions, are given in Appendices A
and B.

5. FORCES ACTING ON AN ATOM

The radiation force that acts on an atom in the
scheme under consideration depends both on the veloc-
ity and on the coordinate of the atom. In the approxima-
tion of weak saturation, the one-photon optical pro-
cesses described by the coherences between the sublev-
els gα and eα ± 1 and the two-photon processes described
by the coherences between the ground-state sublevels
g–1 and g1 contribute to the force.

Below, we consider the radiation force in the practi-
cally important case of large negative detunings (–δ @ γ),
where the radiation force produces the deepest sub-
Doppler cooling of an atomic beam [20, 21]. Restrict-
ing our analysis to low velocities (kv  ! γ) and small
Zeeman shifts (|ωg |, |ωe | ! γ), we can derive the follow-

Dii "
2k2γ=

× α ii
σ Re 2– e 2–

0 1
2
---Re 1– e 1–

0 1
3
---Re0e0

0 1
2
---Re1e1

0 Re2e2

0+ + + + 
 

+ α ii
π 1

2
---Re 1– e 1–

0 2
3
---Re0e0

0 1
2
---Re1e1

0+ + 
 

+
1
2
---δiz"

2k2Ω i Tg 1– e 2–

1 Te 2– g 1–

1– Te2g1

1 Tg1e2

1–+( )---

+
i

2
------- Tg0e 1–

1 Te 1– g0

1– Te1g0

1 Tg0e1

1–+( )

+
i

6
------- Te0g 1–

1 Tg 1– e0

1– Tg1e0

1 Te0g1

1–+( ) .

α ii
σ α ii

π

α ii
σ Φσ n( )ni

2 n2 , α ii
πd∫ Φπ n( )ni

2 n2 .d∫= =

α xx
σ α yy

σ 3
10
------, α zz

σ 2
5
---,= = =

α xx
π α yy

π 2
5
---, α zz

π 1
5
---.= = =

Raa
0

Sab
0 Qaa

1 Tab
1
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ing approximate expression for the radiation force near
the axis of the compressing configuration (z = 0), which
reduces to the sum of the forces due to one- and two-
photon processes (Fig. 3):

(25)

where

(26)

is the dimensionless saturation parameter and

(27)

is the sub-Doppler resonance halfwidth for |δ| @ γ.
Under the same conditions, the force acting on a

static atom is also the sum of the forces due to one- and
two-photon processes (Fig. 4):

(28)

Recall that the Zeeman shifts ωg and ωe are propor-
tional to the z coordinate.

F 0 v,( )
25
11
------"kγGγ2

δ2
--------- 88/85( ) kv /µ( )2+

1 kv /µ( )2+
--------------------------------------------kv

δ
-------–=

–
60
17
------"kγ kv / δ

1 kv /µ( )2+
-----------------------------,

G
2Ω2

γ2
----------

1
10
------

d E0

"γ
------------- 

 
2

= =

µ 1
4
--- 17

33
------
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Fig. 3. Radiation force versus velocity at z = 0, the detuning
δ = –10γ, and the saturation parameter G = 0.1 (solid line)
and 0.5 (dashed line). The sub-Doppler resonance line half-
widths µ = 0.18γ (solid line) and 0.90γ (dashed line) corre-
spond to the chosen detuning and saturation parameter.
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The broad parts of the velocity and coordinate
dependences of the radiation force are attributable to
the one-photon absorption (emission) weakly perturbed
by two-photon processes. In our case of large detunings
(|δ| @ γ @ µ), the broad velocity dependence originates
from the two resonances of one-photon absorption
(emission) located at the velocities kv res = ±δ. The
broad spatial dependence of the radiation force origi-
nates from the one-photon resonances related to the
Zeeman shift frequencies.

The narrow resonances in the field are attributable to
two-photon processes. For an atom that moves in a zero
magnetic field, i.e., at z = 0, the two-photon processes
are effective at two-photon resonance velocities

i.e., at velocities v  ≈ 0. For a static atom (v  = 0), the
two-photon processes are effective for

i.e., for ωg ≈ 0 or for z ≈ 0 (Fig. 4).

The characteristic velocity scale of the change in the
force due to the sub-Doppler resonance is determined
by the characteristic velocity v sD = µ/k, which for weak
saturation and for a large negative detuning is

(29)

The characteristic spatial scale of the change in the
force due to the sub-Doppler resonance is determined
by the length lsD on which the Zeeman ground-state

ω kv±( ) ω kv+−( ) 0,≈–

ω ωg±( ) ω ωg+−( ) 0,≈–

v sD
1
4
--- 17

33
------

Gγ
δ

-------γ
k
--.=

F(z, 0)/"kγ

0.002

0.001

0

–0.001

–0.002

–50 –40 –30 –20 –10 0 10 20 30 40 50

z/lsD

Fig. 4. Radiation force versus coordinate at a zero velocity,
the detuning δ = –10γ, and the saturation parameter G = 0.1
(solid line) and 0.5 (dotted line) for the Lande factors gg =
1/3 and ge = 1/2. The value of lsD defined by (30) was cho-
sen as the scale length.
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sublevel splitting is equal to the two-photon resonance
width. For weak saturation and for a large negative
detuning, the condition ωg = µ specifies the scale length

(30)

For definiteness, we estimate the degree of beam
compression for 85Rb atoms that interact with laser
radiation on the 52S1/2(F = 3) – 52P3/2(F = 4) dipole tran-
sition at the wavelength λ = 780 nm. In general, this
scheme is described by a (7 + 9)-level model atom.
However, since the higher order multiphoton processes
give small contributions to the radiation force, a simple
(3 + 5)-level model can be used to estimate the main
effects. For the optical transition under consideration,
gg = 1/3 and ge = 1/2. If, for example, we choose the satu-
ration parameter G = 0.5 and the detuning d = –10γ, then
the characteristic velocity interval is v sD = 2.1 cm s–1. For
a moderate magnetic field gradient, a = 10 G cm–1, the
characteristic spatial scale is lsD = 50 µm.

6. BEAM COMPRESSION

The radiation force (28) produces a potential well
across the atomic beam axis:

For large detunings (|δ| @ γ) and for the Lande factors
gg = 1/3 and ge = 1/2, this potential well is described by
the approximate expression

(31)

where we introduced the characteristic length on which
the Zeeman shift frequency is equal to the natural line
width,

(32)

The shape of the potential well (31) near the bottom is
determined by the two-photon sub-Doppler resonance
and its wings are determined by the Doppler resonance
(Fig. 5). At the magnetic field gradient a = 10 G cm–1,
the characteristic length for the transition in 85Rb with
the natural line halfwidth γ/2π = 2.95 MHz under con-
sideration is zm ≈ 2.1 mm.

The atomic oscillation frequency near the bottom of
the potential well where the sub-Doppler resonance is
effective is

(33)
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where ωr = "k2/2M is the recoil frequency. At the same
detunings δ = –10γ and the magnetic field gradient a =
10 G cm–1, the oscillation frequency for the chosen
transition with the characteristic recoil frequency
ωr/2π = 3.8 kHz is ωv ≈ 400 Hz.

Let us now estimate the parameters of the com-
pressed atomic beam. For a negative detuning (δ < 0),
radiation force (25) reduces to the frictional force

with the coefficient of friction β, which at large detun-
ings (|δ| @ γ, Ω) is proportional to the recoil frequency:

(34)

The velocity dependence of the momentum diffu-
sion tensor also includes the two-photon sub-Doppler
resonance localized at zero velocity. For our purposes,
it will suffice to use the diffusion coefficient Dzz at zero
velocity and zero coordinate, D0 = Dzz(0, 0). This value
of the diffusion coefficient, together with the coefficient
of friction β, determines the atomic temperature near
the quadrupole configuration axis according to the
steady-state solution of the Fokker–Planck equation:

At large detunings (|δ| @ γ, Ω), the momentum diffu-
sion coefficient D0 is estimated as

(35)

Accordingly, the transverse velocity distribution of the
atomic beam near the quadrupole configuration axis is
described by the Maxwellian distribution with the char-
acteristic temperature

(36)

The spatial distribution is described by the Boltzmann
distribution

(37)

Since the potential has the form (31), the beam size
near the bottom of the potential well depends only on
the saturation parameter G and on the characteristic
length zm. For the chosen Lande factors, the beam width
is estimated as

(38)

For detuning δ = –10γ, saturation parameter G = 0.5,
and magnetic field gradient a = 10 G cm–1, the temper-
ature is 3 µK and the beam size is 18 µm.
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It should be particularly emphasized that the above
estimates are also retained for the beam compression
along any other direction. Thus, in describing the com-
pression of an atomic beam along the y axis, substitut-
ing the laser field (2) for field (3) in the basic equations
does not change the above estimates. The estimates of
the compression for any other directions include addi-
tional geometrical factors on the order of unity.

The widths of the velocity and spatial distributions
determined above can be used to estimate the phase
density of the compressed atomic beam. We give an
estimate of the dimensionless phase density [22]:

(39)

where Na is the number of atoms in the beam and
(∆r∆p)3 is the phase volume occupied by the atoms. In
the case of an atomic beam, it is convenient to express
the phase density in terms of the mean atomic density
na and to separate out the widths of the atomic momen-
tum distribution along, ∆pl, and across, ∆ptr, the beam
axis:

(40)

The atomic density in the magnetic system under
consideration is limited by the dipole–dipole atomic
interaction, by the repulsive potential produced by scat-
tered laser radiation, and by the attractive potential pro-
duced by the absorption of laser radiation. All these fac-
tors were studied in reasonable detail, because they
play an important role in magnetooptical traps [23–26].
The most important factor is the reabsorption of pho-
tons inside the atomic ensemble. Multiple photon reab-
sorption causes the frictional and compressing forces to

Λ
Nah3
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Λ
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U/"γ
10
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4

2
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Fig. 5. The potential well for an atom at the same parame-
ters as in Fig. 4.
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decrease. A characteristic feature of an axisymmetric
magnetic system is its small cross section. This circum-
stance shows that the atomic medium can remain opti-
cally transparent in the transverse direction at a rela-
tively high density. A standard estimate for the atomic
density na = 1/σ∆z (where σ is the resonance absorption
cross section) and available data on the atomic density
in magnetooptical traps show that the maximum atomic
density in the beam is limited to a value on the order of
na = 1012 cm–3. If we take the realistic Doppler value of
∆pl = Mγ/k for the width of the longitudinal momentum
distribution and the sub-Doppler value that corresponds
to the temperature of 3 µK for the width of the trans-
verse momentum distribution, we then obtain Λ = 5 ×
10–4 for the 85Rb atomic beam phase density.

7. CONCLUSION

Our analysis shows that the sub-Doppler resonances
in the radiation force allow atomic beams to be com-
pressed to values on the order of several tens of
microns. Such a significant compression is, naturally,
possible for slow atomic beams where the time of flight
of the atoms is enough for the atomic temperature to be
reduced to the sub-Doppler value.

Thus, we found that an atomic beam in a nonuni-
form magnetic field could be compressed to a diameter
on the order of several tens of microns and the phase
density could be increased to a value on the order of
10−4–10–3. Such a high expected atomic phase density
in the compressed beam enables the subsequent evapo-
rative cooling of the atoms down to quantum degener-
acy for a realistic length of the magnetic trapping sys-
tem [27]. In turn, the realization of this possibility may
allow a continuous-wave atomic laser to be produced.

APPENDIX A

Below, we give the system of equations that defines

the steady-state values of the functions  = Nα,

 = nα, and  = cab:

(A.1)
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(A.2)

Equations (A.2) were derived from Eqs. (9) considered
in the zero order in photon momentum. Normalization
condition (17) was written as the first equation of sys-
tem (A.1).

APPENDIX B

Below, we give the system of equations for the func-

tions  = Qα,  = qα, and  = tab:

(B.1)
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(B.2)
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Equations (B.2) were derived from Eqs. (9) considered
in the first order in photon momentum. The first equa-
tion of system (B.1) is normalization condition (19).
The quantity f = F/"kγ is the normalized force.
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