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Abstract

This paper considers the channeling of atoms over a hollow tapering waveguide with an evanescent laser light wave
formed on its inner surface, the frequency detuning of the wave being positive with respect to the atomic absorption line.
Using inelastic reflection of the atoms from the evanescent light wave and tapering waveguide geometry makes it possible to
reduce the temperature and increase the phase-space density of the ensemble of atoms being continuously injected into the

umvpmudﬁ from a magneto-ontical tran l‘\u a factor of m5 It is suggested that the waveguide under consideration should be
from a magneto-ophi ugge. that egu consigeration sncwia

used to study the specific features of the quantum propagation of atoms over the waveguide and collective phenomena in
quantum-mechanical systems of high density (the Bose-Einstein condensate), and also as a bright coherent source of cold

atoms.

PACS: 32.80

1. Introduction

An atom bnlaced in a guasiresonant lacer field is acted

atom placed quasiresonant laser field is acted
upon by a dipole light pressure force which pulls the atom
in, or pushes it out of the region of high field intensity,
depending on the sense of the atomic polarizability at the
optical frequency. The use of the gradient light pressure
force is at the root of mirrors for atomic de Broglie waves,
as well as other optical elements of atomic optics and
interferometry, such as atomic lenses and various types of
atomic traps. resonators, and waveguides (see reviews in
Refs. [1-3]). Two schemes have been suggested and im-

nlemented to date for the channelino of atomg over an
piemented o date ior the channeing of atems over an

optical waveguide. The authors of Ref. [4] suggested using
the fundamental optical mode of a hollow cylindrical
waveguide containing laser light with a negative frequency
detuning for the channeling of atoms drawn toward the

wavaonide avic hy the aradient force. Thig nraonosal wag
WavVeguIGe axis by the gradient 1orce. 1nts proposal was

successfully realized in Ref. [5]. It was proposed in Ref.
[6] that use should be made of an evanescent light wave
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inside a hollow cylindrical optical fiber to make a wave-
guide for atoms. Atoms propagate in such a waveguide

while reflecting from the evanescent light wave having a

positive frequency detuning [7].
The elastic reflection of atoms from an evanescent light
wave has been well studied, both theoretically [8,9] and

experimentally [10-12]. In the case of reflection of atoms
whose energy level system agrees well with the A- rlmor'\m

(alkali metals), they managed to observe experlmemally
[13] the inelastic reflection of atoms predicted in Ref. [14],
associated with their spontaneous transitions between hy-
perfine structure sublevels in the course of interaction with

the evanescent wave., Ag demonstrated in Ref, “'ﬂ an

e vanosLenl wave, CCINONSH AW JAX+1 0%

atom may lose, in a single reflection event, up to 50% of
its transverse kinetic energy with a probability of a few
tens percent. It was suggested using the effect of inelastic
reflection of atoms to cool and localize atoms in a gravita-

tion tran [Iﬁ] The firgt attemnt to observe reflection

U0n Uap 1i2) 100 ISy Qucinpn QOSCT reiectio

cooling in a hollow fiber was undertaken by the group at
the University of Colorado [16]. In this work, we present a
fuil treatment of the atomic phase-space density increase in
a hollow tapering fiber, which was shortly described in

Ref. [17‘ and vronese to nmr\lnv thig effect to make a
ne /1, anG propoese e emp make

brlght coherent source of ultracold atoms.
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The paper is organized as follows: le>

In Section 2.1 we consider the channeling and cooling
of atoms in a plane waveguide and present the analytic
relationship between the transverse part of the kinetic
energy of an atomic ensemble and the longitudinal coordi-
nate. In addition, we describe a computer model and find
the lowest temperature attainable through this process. The
question of optimal parameters of the evanescent wave
laser is discussed, too. In Section 2.2 we consider the
characteristic features of atomic propagation through a
cylindrical waveguide. Using as an example a 2D tapering
fiber (Section 2.3), we show the possibility of phase-space
density increase in such a fiber and examine the problem
of its optimal geometry from this point of view. These
results are used in Section 2.4 to reveal the dependence of
the phase-space density of an atomic ensemble in a 3D
tapering hollow fiber and output thermodynamic parame-
ters of the atomic gas on its longitudinal coordinate. In
Section 3 we discuss some possible applications of the
proposed cooling scheme: (a) investigation of the behavior
of an ensemble of weekly interacting bosons near the point
of condensation; (b) development of a bright coherent

source of the de Broglie wave with a characteristic wave- -

length of the order of several tenths of microns (Section
3.2).

2. Increasing the phase-space density of an atomic
ensemble in a hollow waveguide

2.1. Plane waveguide

It is convenient to begin by considering the evolution
of an atomic ensemble in the one-dimensional case, where
the simple analytical description is possible. Consider the
behavior of an atom in a plane hollow waveguide formed
by two paraliel dielectric plates (Fig. 1) on whose inner

fiber
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Fig. 1. Plane atomic waveguide. The atom channels over the

waveguide while experiencing elastic and inelastic reflections
from the evanescent light wave.
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Fig. 2. Energy level diagram of the sodium atom and transitions
ensuring the cooling of the atom upon reflection.

hfs

surfaces evanescent waves are formed with a positive
frequency detuning for the transition between the lower
hyperfine structure sublevel |F = 1) and the excited state
|P) of the sodium atom (Fig 2). Assume that the wave-
guide is filled with light whose frequency is tuned to
resonate with the transition |F =2) & [P} (‘‘repumping’’
light). The evanescent waves provide for the reflection of
the atom in the course of being channeled over the wave-
guide. This reflection may be either elastic (the atom
remains in the state |F = 1)) or inelastic (the atom moves
to the state {F = 2)). An atom in the state | F = 2) residing
outside the evanescent waves is moved back to the sub-
level |F = 1) by the repumping light.

Let the initial atomic velocity projection onto the wave-
guide axis be positive, and the transverse atomic velocity
be other than zero. In that case, the atom will start to be
channeled over the waveguide, while undergoing reflec-
tions from the evanescent waves. The average reduction of
the transverse energy of the atom in a single reflection
event is [15]

AED = [ (U~ U(r) T s

3556, o G TOviEL (D)
where U, and U, are the space-dependent light-induced
shifts of the sublevels |F = 1) and |F = 2) in the evanes-
cent wave, respectively, I';, is the rate of the transition
from |F=1) to |F =2), L is the characteristic depth of
penetration of the evanescent wave into the vacuum, g is
the factor allowing for the atomic degeneracy in the angu-
lar momentum projection, I is the natural linewidth, & is
the detuning of the laser frequency from the frequency of
the transition [F = 1) «|P), 8, is the hyperfine split-
ting, M is the mass of the atom, and v, is its transverse
velocity. The average rate at which the atomic energy
decreases in the waveguide is governed by its change in a
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single reflection event and the time between two consecu-
tive reflection events, A7 =d /v | . Dividing both sides of
Eq. (1) by Ar, we get the following expression for the
average atomic energy reduction rate:

(AE ) 2 Syps

Ar 3 Sy t0 d o h

Replacing in the above expression the ratio between the
finite differences by the appropriate derivative, we obtain a
differential equation for the rate of extraction from the
transverse kinetic energy component E | of the atom in
the course of its being channeled over the waveguide:

. AT 2E3 )
F =—%—— " — ——— =_(CE*. 3
+ T+t 8 a 5 h * (
Having solved this equation subject to the initial condition
E (0)=E ,, we get the relationship between the energy
E | and the channeling time of the atom in the waveguide:

1

E (1)=—"—"—.
(0 Cr+1/E

(4
Considering that the longitudinal atomic velocity v. = const
and = v.7. we may recast Eq. (4) in the form

l

EL(:)ZCZ/U:’*'I/EM)‘ %)

Eq. (5) holds true when the transverse kinetic energy of the
atom is much higher than its recoil energy. Failure to allow
for the recoil momentum leads to a wrong relationship
E  (2) at large = values:

E () » 0

To reveal the behavior of the function E  {z) at small
transverse kinetic energy values, we numerically integrated
the equations of motion of the atom in the waveguide:

Mi= —VU, ,,(r)+f(1), (6)

where U, ,4(r) is the potential energy of the atom in one
of the “*dressed”" states [18] |1), 12). or [3) corresponding
to the levels |F=1), |[F=2), or |P):

o rare
Ur) = E(v’ﬁ‘-f—i.()ﬁ(r) -5}, (7a)
n -
Ux(r) = 5 (V8 + 8uss)* + 308(r) —8).  (Tb)
b S e
Uy(r) = = 3 {87 +30:(r) -35). (7c)

J(t) is the term allowing for the change in the momentum
of the atom upon a change in its quantum state, and {2 in
Eqgs. (7a)-(7¢) is the Rabi frequency. When the atoms are
channeled over a waveguide formed by an evanescent light
wave with a positive frequency detuning, some of them
may be lost as a result of, first, spontaneous decays and

secondly subbarrier channeling. Both of these loss mecha-
nisms were taken into account in our model by excluding
from further consideration those atoms which reached the
surface of the dielectric in the course of reflection. The
validity of such an approach will be discussed below.

To allow for momentum diffusion and other effects
associated with changes in the quantum state of the atom
during its motion, use was made of the Monte Carlo
random process modeling technique. At each numerical
integration step, we computed the probability of the transi-
tion [F=1) »{F=2) and then compared it with a ran-
dom quantity of the same density of distribution on the
interval [0,1] and changed the quantum state of the atom or
not, as was appropriate. The presence of the *‘repumping’’
laser radiation was taken into consideration as follows. All
the atoms residing in the state [F=2) at a distance
exceeding a few A from the dielectric surface were moved
to the state |F = 1). The change in the state of the atom
was attended by the recoil momentum p_.. of four photons
on average being imparted to it [15],

4 2ar 4
prec= Zﬁkl:h—A— Zgi’ (8)

i=} i=1

where A is the wavelength of the spontaneously emitted
photon and £ is a random unit vector.

To allow for tunneling, we computed for each event of
reflection from the evanescent wave the probability p,,
that the atom will tunnel through the potential barrier
produced by the wave [19]:

! 4 \3/2

1 I A (v pa — V7
Pn = 35 D=—__£__LE__J'_)__’ (9)
I+e” 29 A vy

3
recoil V1 max

where v..; is the recoil velocity of the atom and v .,
is the maximum classical atomic velocity at which it still
can reflect from the evanescent wave. As demonstrated in
Ref. [6], the correction to p,,, introduced by the interac-
tion between the polarized atom and the dielectric surface
is small, the parameters in hand being what they are. so
that the lifetime of the atom in the waveguide is reduced
by a mere 10%. But this decrease can be compensated by
increasing the laser intensity. We therefore disregarded this
effect. An atom was assumed to have either settled on the
waveguide wall and left the ensemble or reflected success-
fuily, depending on the relationship between p,,, and a
random quantity of the same density of distribution on the
interval [0,1]. Both of the main mechanisms responsible
for the loss of atoms were thus taken into account in our
model.

As was experimentally observed in Ref. [20], the reflec-
tion cooling of sodium atoms in an evanescent wave has
the highest efficiency if the laser detuning is approxi-
mately equal to the Rabi frequency Qg(ryqqe) at the
turning point of the atomic trajectory. In the case of an
incident sodium atom with an average velocity of 50 cm/s
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chosen to be 500 MHz, i.e. the height of the light potenual
barrier is greater than the average kinetic energy of the
incident atom by a factor of 20. All the numerical results
presented in the paper were obtained using this laser light
parameters.

The modeling resuits are presented in Fig. 3. The
squares show the computed mean absolute transverse
atomic velocity values. The solid line is the result of a
parametric adjustment by means of functions of the form

(10)

with the parameters v, ..., A, and B. The parameter
U, min has the meaning of the ultimate transverse velocity
whereto the mean transverse velocity of the atomic ensem-
ble tends in a plane waveguide. The quantity v , ., deter-
mined ihe minimum temperature to which an atomic en-
semble can be cooled in such a system. Expression (5)
describes quite well the change of energy of an atom down
to a value comparable with its recoil energy, but E  (¢)

- F # 0. In the case under consideration, E is

t=7x
of the same order of magnitude as the kinetic atomic
energy corresponding to three recoil momenta (v | ,;, = 10

cm /c)
cm/s).

v, (2)=v ot 1+ Az

L min 1 min

2.2, Cylindrical fiber

Let us now analyze by means of the above—described

ha avunliti nf an atn ncamhla ha
method the evolution of an atomic ensemble in a horizon-

tal hollow cylindrical waveguide with an inside diameter
of d =10 pm and a length of L = 0.8 cm, which is shown
schematically in Fig. 4, along with a typical trajectory of
an atom therein. The initial conditions for the atomic

Z; cm

Fig. 3. Average transverse velocity component of atoms propagat-
ing over a plane waveguide as a function of the longitudinal
coordinate. The squares indicate computer modeling results, and
the solid line is the result of a parametric adjustment by means of

fractional rational functions v, - 7cm/s.

g
I 4+

waveguide

;

repumping
laser

o T

X

-
Z
Fig. 4. Hollow cylindrical waveguide and a typical trajectory of an
atom therein. Because the atom gradually loses its transverse
kinetic energy component in the course of channeling over the
waveguide, its trajectory clings closer and closer to the evanescent
wave.

velocities and coordinates were selected as follows. The
atoms were placed in the plane XOY at the beginning of
the waveguide (see Fig. 4) so that their distribution over
the cross-section of the waveguide was uniform: the longi-
tudinai veiocity v. was equai to 50 cm/s for aii atoms,
and their distribution over the radial and azimuthal veloc-
ity components corresponded to a thermal distribution with
a mean velocity of 50 cm/s. The atoms channel over the
waveguide while experiencing numerous reflections from
the evanescent wave. Some of them {around 30%) are of
inelastic character and lead to a reduction of the radial
atomic velocity component, its azimuthal counterpart re-
maining unchanged. As can be seen from Fig. 4, this
causes the atomic trajectory to cling closer and closer to
the evanescent wave, so that the atom eventually starts
“‘rolling’’ over the wave. Note that this effect stops the
atomic cooling process. It is apparently exactly this fact
that prevented the authors of Ref. [16] from actually
observing cooling of atoms in a cylinder waveguide. For
this reason, the radial distribution of the atoms at the exit
of the waveguide features a sharp peak near the surface of
the dielectric (Fig. 5). One can also see from Fig. 5 that
the radial atomic distribution at the exit of the cylindrical
waveguide has narrowed perceptibly (approximately by a
factor of 5).

Figs. 6a, 6b present the initial and final atomic distribu-
tions over the absolute radial and azimuthal vplnmtv com-

ponents in the cylindrical waveguide. A substantlal (five-
fold) cooling of the radial atomic velocity component as a
result of inelastic reflections from the evanescent wave is
evident from Fig. 6a. With the waveguide being 0.8 cm

long, an atom nndPronpc some 30 reflections from the

IR, all aloMll URCCTEOLS sOme 20 relzeclion S IO U
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Fig. 5. Spatial distributions of atoms over the radius of a cylindri-
cal waveguide at the entrance (7 = 0) and exit (z = 0.8 cm). The
initial atomic distribution, uniform over the entrance cross section
of the waveguide, transforms into a distribution with a pronounced
peak near the waveguide wall. The width of the exit distribution is
approximately one-fifth of the entrance distribution.

evanescent wave. In that case, as follows from the curve of
Fig. 3, a thermal equilibrium is established between the
evanescent wave and the transverse atomic degree of
freedom at a temperature of 7= 8 X 10™¢ K. The insignif-
icant narrowing of the azimuthal velocity distribution (Fig.
6b) is explained by the coupling between the radial and
azimuthal degrees of freedom due to the gravity force that
disturbs the cylindrical symmetry. The extent of this cou-
pling is determined by the parameter a=Mgd/E ;.
which in our case is equal to about 1072

Fig. 7 shows the mean absolute radial atomic velocity
as a function of the longitudinal coordinate z in the same
way as Fig. 3 does for the case of a plane waveguide. In
the case of cylindrical waveguide symmetry, the cooling
limit of the transverse atomic velocity component is 7
cm/s. As can be seen, the characteristic waveguide length
at which this limit is reached amounts to about 0.5 cm,
which is somewhat less than in the case of a plane
waveguide. The substantial narrowing of the radial spatial
and velocity distributions in the cylindrical waveguide
points to a principal possibility of using such schemes to
increase the phase-space density of an atomic ensemble.

2.3. 2D hornfiber
The narrowing of the velocity and spatial distributions

of atoms in an ensemble in the course of their channeling
over a cylindrical wavegunide points to the possibility of
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Fig. 6. (a) Absolute radial and (b) azimuthal velocity distributions
of atoms at the entrance and exit of a cylindrical waveguide. The
initial transverse and azimuthal atomic velocity distributions are
of Maxwell type with a temperature of kzT=#AT (Doppler
cooling limit) and the initial longitudinal atomic velocity distribu-
tion is of &-type. (a) The exit atomic distribution has its average
velocity corresponding to two recoil momenta approximately,
which is around one-fifth the initial atomic velocity. (b) The
azimuthal distribution has slightly narrowed because of the gravity
force disturbing the axial symmetry and coupling together the
radial and azimuthal degrees of freedom.
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Fig. 7. Average transverse velocity component of atoms propagat-
ing over a cylindrical waveguide as a function of the coordinate 2.
The squares indicate computer modeling resuits, and the solid line
is the result of a parametric adjustment by means of fractional
rational functions v, — 7cm/s.

T+

using this effect to increase the atomic phase-space den-
sity. Consider for simplicity a two-dimensional curved
tapering waveguide formed by two dielectric surfaces
whose cross-sections at planes parallel to the plane YOZ
are hyperbolas:

A,
7)=~———+B,,z2+C,,, 11
() = ey F Bt G (1)
where A, ,, B, ,, C,, and k , are parameters. Each of the
hyperbolas has an asymptote forming some angle with the
OZ-axis. The hyperbolas form a tapering two-dimensional
hollow waveguide which at great : values can be well

approximated by a cone with an apex angle of a (the taper
angle of the waveguide) inclined at an angle of B with
respect to the horizontal. The treatment of the two-dimen-
sional problem takes a substantially less computer time
and gives an understanding of the physical phenomena
occurring in the 3D system at various parameters. Fig. 8
shows the 2D hornfiber and various types of atomic trajec-
tories in it. We analyzed a waveguide with an entrance
aperture diameter of 500 wm and an exit aperture diameter
of 10 wm. Atoms at the initial instant of time were placed
near the origin of the coordinates in the waveguide cavity
and were imparted some initial velocity directed inside the
waveguide. The absolute value of the velocity obeyed a
thermal distribution with a mean value of 50 cm/s. The
atoms channeled over the waveguide while undergoing
numerous reflections from the evanescent wave. Because
of the tapering of the waveguide and the effect of the
gravity force, the atomic velocity projection onto the local
waveguide axis varied in the course of channeling. The
contributions from these two factors in the given wave-
guide geometry are opposite to each other. If there had
been no dissipation in the system, an atom in the wave-
guide would have been observed to execute undamped
oscillations with some frequency and a mean amplitude
corresponding to its initial kinetic energy by the virial
theorem.

The presence of a mechanism by which an atom in the
waveguide loses some of its kinetic energy in inelastic
reflections from the evanescent light wave causes the
equilibrium position of the atom to move gradually down-
ward. Depending on the relationship between the dissipa-
tion rate and the natural oscillation frequency of the atom,
the system exhibits one of the following two modes of
behavior typical for linear oscillatory systems: (i) oscilla-
tions damping over many periods of oscillation (see Fig. 8)
and (ii) an exponential decay of the initial energy without
oscillations. Fig. 8 also presents the trajectory of an atom

Fig. 8. Trajectories of atoms in a 2D hornfiber. 1 ~ damped oscillations; 2 - death through tunneling; 3 — strongly damped oscillations.
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which has tunneled through the potential barrier formed by
the evanescent light wave and *‘settled’” on the waveguide
wall. This fact is marked by a tombstone. One can also see
from this figure that the density of the atomic trajectories
increases as the waveguide narrows down, which means
that the atomic phase-space density becomes higher. The
oscillation free mode of channeling was found to be
optimal to achieve the coldest possible output atomic
ensemble at the fixed evanescent wave parameters and
fiber length. This mode was realized by variation of the
apex and the inclination angles (« and B respectively).
We have estimated that the mean velocity of the atomic
ensemble along the axis of the fiber was constantly de-
creasing provided that 8= 27° and a = 0.7°. These condi-
tions are optimal for the proper coupling of the transverse
and longitudinal velocities in the gravitational field and
provides for the reduction of the average atomic velocity
to the lowest output value of 11 cm/s.

Fig. 9 shows the reiative change of the averaged over
the cross-section atomic phase-space density, ppy,/Ppng, in
the two-dimensional waveguide under consideration as a
function of the coordinate :z. The substantial rise of the
phase-space density is due to narrowing of the spatial and
velocity distributions of the atomic ensembie (the tapering
of the waveguide and the cooling of the atoms) and also
the accumulation of atoms in the narrow part of the
waveguide.
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Consider now the behavior of an atomic ensemble in a
hollow three-dimensional tapering curved waveguide
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Fig. 9. Increase of the phase-space density of an atomic ensemble
in a hollow 2D hornfiber. The increase is due to dissipative
reflections of the atoms from the evanescent wave and the taper-
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Fig. 10. Nustration of the use of a 3D hornfiber as a coherent
source of de Broglie waves. Atoms are injected continuously from
a magneto-optical trap into a hollow waveguide with an evanes-
cent light wave formed on its inside surface with a positive
frequency detuning with respect to the atomic absorption line. The
atoms channel over the waveguide while undergoing reflections
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kinetic energy of the atoms. This causes the spatial and velocity
distributions of the atomic ensemble to narrow, i.e., increases its
coherence.

shown schematically in Fig. 10, along with a cloud of
atoms confined in a magneto-optical trap (MOT). In this
case we use the following parameters of evanescent light
wave: (7 ne) = 500 MHz, § =100 MHz. The cross-
section of the 3D hornfiber by the XZ-plane is the 2D
hornfiber defined previously. The channeling of atoms
over such a waveguide may be due to their repeated
reflections from an evanescent light wave. Assume that
atoms are being continuously injected from a magneto-
optical trap into the waveguide cavity and their velocity
distribution corresponds to a Maxwell one with a tempera-
wre of T=#AT/ky (kg being the Boltzmann constant)
that can easily be attained in the trap. The entrance inside
diameter of the waveguide corresponds to the characteris-
tic size of the cloud of atoms in the trap and amounts to
500 pm. The diameter of the exit waveguide aperture is 10
pm. We computed the averaged over the cross-section
phase-space density of the atomic trajectories in several
planes parallel to the YOX plane. Fig. 11 presents the
phase-space density normalized to its initial value

(z)/p.... as a function of the coordinate z. One can see
Pt 21/ Ppno 28 @ funchio oordi z
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that while the atoms channel in the waveguide over a
distance of L =1 cm, their phase-space density is in-
creased by five orders of magnitude. The larger increase
(by more than two orders of magnitude) of the phase-space
density in comparison with that in the case of a two-di-
mensional waveguide is explained by the additional nar-
rowing of the spatial distribution and the longer lifetime of
the atoms, which in the three-dimensional waveguide is
about 1 second. Note that the total probability that a single
atom will be lost in the 3D-hornfiber is of the order of
107°.

The average transverse atomic velocity in the ensemble
at the exit of the waveguide amounts to about 10 cm/s,
while the mean absolute velocity is around 20 cm/s.
However, at the expected high densities of atoms in such a
waveguide equalization of their kinetic energy distribu-
tions among all their degrees of freedom will take place
because of collisions and long channeling time. Therefore,
one might expect that the average atomic velocity will be
around 10 cm/s, which corresponds to an ensemble tem-
perature of T=1.5X10"% K. As will be demonstrated
below, reaching such a low temperature at atomic densities
of the order of 10-10'> cm™* makes quantum statistics
peculiarities to manifest themselves in the atomic system.
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Fig. 11. Phase-space density of an atomic ensemble in a 3D
hollow hornfiber as a function of the longitudinal coordinate. The
narrowing of the spatial atomic distributions over the two coordi-
nates by a factor of 50 approximately and the five-fold reduction
of the width of the absolute atomic velocity distribution raises the
phase-space density of the ensemble by five orders of magnitude.
As in the two-dimensional case, this occurs thanks to the presence
of dissipation in the system and the tapering geometry of the
waveguide,

3. Results and discussion

The achievement of an extremely cold and dense en-
semble of weekly interacting bosons gives an opportunity
to use the proposed device for investigating quantum
statistics phenomena and the wave propagation of matter.
Consider a tapering waveguide terminating in a horizontal
section of a cylindrical waveguide with an inside diameter
of 4 um. Assume that while channeling over it, an atom
undergoes no spontaneous decays (there occur only elastic
reflections of slow atoms from the evanescent wave with
its frequency detuned far from resonance). Accordingly,
there is no “‘repumping’’ laser light. Insofar as the temper-
ature of the atomic ensemble is low, we assume that the
probability of three-particle collisions is also low. Conse-
quently, the Na, molecules can be disregarded.

3.1. Bose—Einstein condensate?

If the phase-space density of noninteracting bosons in
an external potential exceeds a certain value governed by
the form of the potential, a perceptible proportion of the
particles in the ensemble will reside at the lowest energy
level. This phenomenon, known as the Bose-Einstein
condensation, gives rise to some interesting physical prop-
erties of the ensemble, associated with the high degree of
coherence of the wave functions of individual atoms. A
Bose—Einstein condensate is formed when the average
distance between the particles in the ensemble becomes
commensurable with the de Broglie wavelength.

Let us reveal the population pattern of the atomic
waveguide modes. To this end, we use the results of Ref.
[6] which presents an approximate equation for the radial-
rotational energy levels of atoms propagating in a quantum
fashion over a hollow cylindrical waveguide with an
evanescent wave in the case where the atomic de Broglie
wavelength is shorter than the optical wavelength, Az < A
(we assume that violating this condition affects very little
the character of the mechanical action of light on the
atom):

€r
EII.IH
X1 ——+ —In|2
=(n+3)m. (12)
Here n, m=0, 1, ..., are the radial and rotational quan-

tum numbers, respectively, V, . is the barrier height of the
evanescent wave, U is a dimensionless parameter charac-
terizing the penetration depth of the evanescent wave into
the vacuum, and €z =2A?U?/Md* is an energy of the
same order of magnitude as the recoil energy. Eq. (12) was
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numerically solved tor E, . In the system in hand, there is
no longitudinal coordinate dependence, and so, for the
sake of simplicity, let us examine a cylindrical waveguide
section of fixed length L = d, assuming that the atomic
wave functions go to zero at its ends (*‘blank’ walls).
Obviously the choice of the value of L is arbitrary and is
only required to satisfy the condition L > Ay, for if the
de Broglie wavelength A, and the characteristic distance
between the particies are much smailer than the size of the
optical cavity, the physical properties of the ensemble of
particles will be governed by its temperature and density
and will depend weakly on the cavity geometry. The total
kinetic energy of an atom in the waveguide is the sum of
the total energies of the radial-rotational and translational
atomic motions:

TrSfLZ[’_’
En m.! En m + E[ = En.'" * W

, (13)

where /=1, 2, ..., is the translational quantum number
characterizing the motion of the atom along the waveguide
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magneto-optical trap, Nyor = 10'0 atoms {21], enter the
waveguide cavity every second, this corresponds to an
atomic flow of j,, = 10° atoms /s. Inasmuch as the flow j
remains approximately constant (the loss of atoms is low),

b o Py ynprey pr PR |

uic Uellbily Ul tllC dlUll]lL CNsSEim IlUlC lll lllC Lyllllullbdl lell
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where v is the velocity of the collective motion of the
atoms along the waveguide. The distribution of the atoms
among the waveguide energy levels E, , , is defined by
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on the number of pamcles. N—p(Tra' /4L, and the
temperature T, which we found numerically from the
normalization equation

Z fBose(En.m.l)zN' (15)

mom

Fig. 12 presents the relative population G = N,/N of
the minimum-energy mode of the waveguide as a function
of the number of particles in the magneto-optical trap,
Nyor» Where N, is the number of atoms in the fundamen-
tal waveguide mode. One can see that at a certain number
density of the particles, reached with realistic Nygr val-
ues, there occurs a sharp increase in the proportion of

atoms in the fundamental waveguide mode. The system

narameters beino what thev are, the relative nnnnlanr\n of
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the fundamental mode amounts to a few percent, which
may impart the ensemble some new properties typical of a
Bose—Einstein condensate. Note, however, the existence of
numerous factors capable of preventing the attainment of

ich narticle dengities and the formation of a
nign particie gensities ang (ne formation of
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Fig. 12. Relative population of the fundamental mode of a cylin-
drical waveguide with a diameter of d =4 pm, in which a 3D
hornfiber terminates, as a function of the number of atoms con-
fined in a magneto-optical trap, of which 10% are being injected
every second into the hornfiber. The concentration of atoms in the
waveguide is plotted on the top X-axis. Attaining a fundamentai-
mode population at a level of a few percent will enable one to
study quantum statistics specifics for bosons, and use the scheme
suggested as a bright coherent source of de Broglie waves.

Bose—Einstein condensate. These include the already noted
three-particle collisions giving rise to the Na, molecules,
interatomic collisions in the evanescent light wave leading
to the |F=1) & |F=2) transitions, and excitation by
diffuse light.

3.2. Bright coherent source of de Broglie waves

The proposed device can be used as a very bright
source of ultracold atoms. The output atomic flux is equal
to the input one because of loss of atoms propagating
through the fiber can be made as small as desired. The
average velocity {v) of the atomic output beam is 10
cm/s, the corresponding de Broglie wavelength of the
atoms is Agg = 0.2 wm. The divergence of the atomic
beam issuing from the waveguide is determined by its
transverse temperature and is about 7/2 rad. In the case
the initial flux is 10° atoms /s, the brightness of the output
beam B=j,, /20c=3X10% atoms/s - sr.

Since a perceptible proportion of atoms in the output
section of the waveguide are in one and the same quantum
state, such a waveguide can be viewed as a coherent
source of de Broglie waves. Let us estimate the main
parameters of the source suggested. The coherent output

flow of atoms in the lowest energy mode is j&or = j, G =4
X 107 atoms/s and its divergence is determined by
diffraction. Creating a coherent source of such high bright-
ness will make possible many interference experiments on
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Note also that by using the method suggested, one can
drive a classical atomic ensemble at a temperature and
particle density typical of a magneto-optical trap to a
quantum state with a high degree of coherence. This will
make it possible to study the specific features of the
quantum mode of propagation of atoms over the wave-
guide, particularly the character of the mechanical action
of light on atoms whose de Broglie wavelength is com-
mensurable with the optical wavelength. Reaching high
particle densities in the system will enable one to reveal
the molecule formation dynamics at very low tempera-
tures.

One of the important problems that the experimentist is
faced with in implementing the source suggested is the
extraction of the atomic beam from the waveguide. While
overlapping and interacting with the atomic beam, the laser
beam producing the evanescent wave may substantially
impair the coherence of the atomic ensemble. One way to
solve this problem is to make the waveguide terminate in a
greatly diverging funnel, so that the light beam emerges
within a hide-angle cone, and use a diaphragm to separate
the light of the atomic beam from each other. Another
possible method is to suppress the evanescent wave in the
exit section of the waveguide cooled to a temperature close
to that of liquid helium by applying an antireflection or
absorbing coating onto the outer surface of the waveguide.
In that case, ultracold atoms will traverse this short wave-
guide section without suffering any dramatic heating and
retaining their coherence, for the energy exchange between
the phonon quantum system of the dielectric and the atom
with de Broglie wavelength much in excess of the charac-
teristic atom dielectric interaction length is of very low
probability.
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