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One-dimensional localization of atoms in a standing
spherical light wave
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The localization of sodium atoms in a spherical standing single-frequency light wave was experimentally studied,and numerical calculations were performed for two- and three-level sodium atom models. A qualitative agreementwas obtained between the experimental and theoretical results for the three-level atoms. The interaction between
sodium atoms and the single-frequency field was shown to cause an effective localization of the atoms in the vicinity
of the light-wave modes. The process was found to be influenced substantially by optical pumping, giving rise to anadditional cooling of the atoms.

1. INTRODUCTION

Of the numerous schemes proposed for the localization of
atoms and ions, the more attractive spectroscopically seem
to be those whereby the motion of the particles is restricted
to a region smaller than the radiation wavelength. With
these atomic localization schemes, an interaction regime is
achieved (the Lamb-Dicke regime) that allows the Doppler
broadening of the atomic quantum transitions to be elimi-
nated.

Such a localization scheme for atoms was proposed by
Letokhovl and by Letokhov and Pavlik,2 who suggested its
use for the purpose of achieving a nonresonant standing light
wave. Later, as the theory was developed further, the idea
was extended to the case of quasi-resonant interaction be-
tween atoms and a standing light wave.3 -5 At present the
scheme is being studied extensively both experimentally 6- 8

and theoretically.4 9 -12 Prentiss and Ezekiel6 detected an
asymmetry in the fluorescence line shape of a beam of sodi-
um atoms traversing a plane light wave at right angles.
They explained this asymmetry as being due to the action on
the atoms of the gradient force, causing the atomic concen-
tration to rise in the vicinity of the nodes or loops of the
wave. Salomon et al.

7 used the absorption of an additional
weakly resonant wave to determine the atomic density dis-
tribution in a standing light wave. The density of the atoms
was found to increase near the nodes or loops of the standing
wave, depending on whether the light frequency detuning
was positive or negative with respect to the atomic transition
frequency.

In Ref. 8 we demonstrated the one-dimensional localiza-
tion of sodium atoms close to the nodes (or loops) of a
standing spherical light wave and also their channeling along
the nodes (or loops) of the curved wave front by observing
the deviation of the atomic beam from its original propaga-
tion direction.

Here we present the results of a more detailed investiga-
tion into the localization of atoms in a quasi-resonant stand-
ing spherical light wave, along with the results of a numerical
modeling of the localization process. In Section 2 we consid-
er the basic idea and specific features of atomic localization
in a plane and a spherical light wave and the conditions

necessary for its realization. Section 3 is devoted to the
method of calculating atomic motion under our experimen-
tal conditions. A further description (Section 4) deals with
the experimental setup and the techniques used to observe
and measure the localization of the atoms. The results of a
comparison between the experiment and the theoretical
model are given in Section 5.

2. IDEA OF ATOMIC LOCALIZATION AND
CONDITIONS NECESSARY FOR ITS
REALIZATION

The motion of atoms in a standing light wave is governed
mainly by the gradient (dipole) force, the friction force, and
momentum diffusion.4 9 '10'3 When the atomic transition
saturation parameter is much less than unity and the field-
atom interaction time is such that the change in the atomic
momentum due to the friction force and diffusion is insig-
nificant, both the friction force and momentum diffusion
can be disregarded. In that case, an atom sees the light wave
as a spatially periodic potential field, the period of which is
equal to that of the spatial field intensity distribution, i.e.,
X/2 [Fig. 1(a)]:

U(z) = U0 Cos 2 kz, (1)

where Uo is the potential amplitude and k = 2r/X. The
motion of an atom in the potential field of a nonresonant
standing light wave was treated by Letokhov' and, in more
detail, by Letokhov and Pavlik.2 An atomic ensemble
placed in a potential field [Eq. (1)] is divided into two
groups. The first group consists of atoms with a total energy
of W = E(z) + U(z) < U, E(z) being the kinetic energy of the
atoms. These atoms reside between two adjacent maxima
of the potential U(z), the distance between which is X/2, i.e.,
they are spatially localized. The localized atoms perform
anharmonic oscillations with an amplitude less than /4
about the potential minima. The second group includes
those atoms for which W > U. These atoms have an infi-
nite motion, i.e., they are not localized. If the entire atomic
ensemble has a continuous energy distribution, the localized
and nonlocalized atoms are spatially intermixed.
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Fig. 1. Atomic localization in a standing light wave. (a) Localiza-
tion in a plane wave. L denotes a localized atom oscillating near the
bottom of a potential well, and N, a nonlocalized atom. (b) Local-
ization in a spherical wave. The circular motion of the atoms gives
rise to an effective centrifugal force, which causes the potential to
change as shown by the solid curve. The force displaces the bottom
of the potential well (Al) and reduces its width (AL) and depth (AU).

Consider a standing wave placed in a uniform field where-
in an atom is acted on by an additional force F along the z
axis. This field may be a gravitational field, a homogeneous
electric field (for ions), or, as in the present work (atomic
motion in a spherical wave), the effective field of an inertial
(centrifugal) force. In that case, the resultant potential
field takes the form [Fig. 1(b)]

U(z) = U0 cos2 kz + Fz.

tensity distribution (Fig. 2). It is not difficult to understand
that in the case of a plane standing wave [Fig. 2(a)] the
localization of atoms has practically no effect on such atomic
beam parameters as divergence and shape.

Atomic localization in a spherical standing light wave oc-
curs in a different manner [Fig. 2(b)]. Suppose that the
atomic beam traverses the standing wave at a point far from
the beam waist. Refer to the polar system of coordinates R,
/3 [Fig. 2(b)]; the effective potential has the form of Eq. (2)
with z = R. The force F in this case is the centrifugal force F
= Mvt2 /R, where M is the atomic mass and vt is the tangen-
tial atomic velocity component. In the case of interest to us,
this force can be considered to be constant because the radial
motion of the atom in the standing wave takes place within a
region approximately X << R across. All the conclusions
drawn above about the motion of an atom in a plane stand-
ing light wave placed in a uniform field are therefore valid
for the spherical standing wave. So the localization of atoms
in a spherical standing light wave is possible when the gradi-
ent force exceeds the centrifugal force. Hence it follows that
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The presence of the additional field has the following
effects: First, it reduces the depth of individual potential
wells [Fig. 1(b)] to

AU = UO[I - (F/Uok)2 ]112 + (F/k) [arcsin(F/Uk) -7r/2,

(3)

where Uok is the maximum gradient force in the standing
wave in the absence of the external field. Second, it reduces
the size of the potential wells to AL < X/2. Third, it shifts
the position of the well bottom by an amount At [Fig. 1(b)].
When F << Uok, the shift of the position of the well bottom is
given by the relation Al = F/Mwv2, where w, is the cyclic
frequency of harmonic oscillations near the well bottom in
the absence of the force F. Finally, what is most essential is
the fact that the additional field gives rise to the force (F)
averaged over the standing-wave period. This force acceler-
ates the nonlocalized atoms and hence causes their eventual
spatial separation from the localized atoms. This in turn
makes it possible, first, to measure the atomic localization
effect itself by observing the spatial separation of the atoms
and, second, to isolate cold (localized) atoms from the entire
atomic ensemble.

Let us now consider two-dimensional atomic motion in a
standing wave formed by a laser beam with a Gaussian in-
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Fig. 2. (a) Localization of atoms in a plane standing light wave.
(Top) Intensity distribution along the transverse coordinate of the
laser beam forming the standing wave. x is the distance from the
laser beam center at which atomic localization occurs. (b) Localiza-
tion of atoms in a spherical standing light wave. so is the atoms'
angle of entry into the standing wave, and a is the angle of deflection
from the original atomic trajectory. In the course of localization,
the atoms are divided into two ensembles, one containing cold,
localized atoms and the other, hot, nonlocalized ones, followed by
their spatial separation.
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the longitudinal velocity of the atoms that can be localized is
bounded above by the critical value

cr (FgR/M) , (4)

where Fg is the maximum gradient force in the standing
wave.

The atoms entering the standing wave separate into local-
ized and nonlocalized groups [Fig. 2(b)]. The nonlocalized
atoms emerge from the wave in a direction close to the
original propagation direction of the atomic beam, while
their localized counterparts move along the nodes (or loops)
of the wave, their original direction of motion being changed
through an angle a 2so.

Thus an atomic beam interacting with a spherical stand-
ing light wave is split into two beams propagating at an angle
so to each other. It was this circumstance that we used to
measure the effect of atomic localization in the wave. The
maximum angle ,o with which atomic localization is still
possible is determined by the divergence of the standing
wave:

(Pmax - wIR, (5a)

where 2w is the diameter of the Gaussian beam forming the
standing wave, measured at a distance R from the waist.
The corresponding angle a is given by

The friction force for a two-level atom is expressed as

Ff = hf2[p/(1 + p)3 ]12y2(1 _ p) - p2(U2 + y2)]/,Y(y2 + U2)1

X {1/[1 + A(Q, p)(av/y)2]j(va)a =-/3(0, p, a, v)(vn)n,
(11)

where n = a/lal and a (0, p, a, v) is the friction coefficient.
The expression for the friction force less the factor inside the
second set of braces is the first term of the force expansion in
terms of velocity,4"14 the factor allowing for higher orders of
expansion. We also calculated this force by using the set of
equations from Ref. 13. This allowed us to find the value of
the coefficient A (, p) to be approximately equal to 3 and to
vary but little in our range of the parameters 0 and p. In our
case the approximation is valid because the transverse veloc-
ity of the atoms is less than critical.5"15 The last term in Eq.
(7) is the force due to the atomic momentum diffusion in
both magnitude and direction, the fluctuation of the mo-
mentum during the time At being given by

Ap = (2D, At)'/ 2%n + (2D2At)1/2 %2 a, (12)

where 41 and 62 are Gaussian-type random numbers, ti is a
random unit vector,'6

2D, = h2a 2'y[p/(1 + p)3 ]11 + [482/(82 + Q2) - 1]p + 3p2

"'max = 2w/R. (5b)

3. CALCULATION OF ATOMIC TRAJECTORIES
IN THE STANDING WAVE

In our case, the motion of atoms in the standing wave can be
calculated by using a quasi-classical approximation.'0

In this approximation the problem is reduced to the inte-
gration of the Langevin equation

dp/dt = F, (6)

where p is the atomic momentum and F is the total force
acting on the atom, which may be represented in the form

F=Fg +Ff +Fd, (7)

where Fg is the gradient force, Ff is that part of the total force
that depends on the atomic velocity (i.e., friction force), and
Fd is the fluctuating force that is due to the atomic momen-
tum diffusion.

A. Two-Level-Atom Approximation
The gradient force for a two-level atom is given by4

Fg = hQ[p/(1 + p)] a, (8)

where = - cois the detuning of the light-wave frequency
w relative to the atomic transition frequency wo,

p = 2g2/(y + 2) (9)

is the local saturation parameter, g = y(2G)112 is the local
Rabi frequency, G = I/Is is the ratio between the light-field
intensity I and the saturation intensity I, 2 y is the natural
atomic transition width, and

a = grad ln u, (10)

where u is the local field amplitude in the standing wave.

+ [y 2 + U2)/y2]p3j1f/[1 + A(av/y)2]1

is the directional diffusion coefficient, and

2D2 = h2 k2%[pI(l + p)]1/[1 + A(av/) 2 ]j

(13)

(14)

is the isotropic diffusion coefficient, with the atomic velocity
dependence of the diffusion coefficient taken into account.

Figure 3 shows the spatial behavior of the standing-wave
potential corresponding to the gradient force Fg [Fig. 3(a)],
the friction coefficient [Fig. 3(b)], and the total diffusion
coefficient for the saturation parameter in the traveling
wave, Go, equal to 104 and for detunings of = 20-y, 100y,
500y [Fig. 3(c)]. It follows from a comparison of the curves
that the deepest potential well is obtained with a detuning of
0 = 100y [Fig. 3(a)]. It can be seen from Fig. 3(b) that the
friction force is a damping force everywhere except in a small
region near the standing-wave node, where the force is di-
rected along the atomic velocity. The size of this region is
determined by the relation p2(1 - p) < 2y 2 /(y2 + 2) [see
Eq. (11)]. The friction force increases with the increasing
detuning , but so does the momentum diffusion [Fig. 3(c)].

Figure 4 illustrates the behavior of the potential energy of
two atoms-localized (1) and nonlocalized (2)-in a stand-
ing spherical light wave, which reflects their trajectories in
the laser field. The atoms spaced a distance d = X/2 apart
move parallel to each other and enter the field at points near
the minima of two adjacent potential wells. The laser field
parameters are as follows: laser power PL = 0.11 W, fre-
quency detuning A = /2r = 400 MHz, and radius of curva-
ture of the wave front R = 2 m. The atoms differ in longitu-
dinal velocity, the localized atom moving with a velocity v =
500 m/sec and its nonlocalized counterpart moving with a
velocity v = 1200 m/sec. The increase of the longitudinal
velocity of an atom enhances the centrifugal force acting on
it in the coordinate system associated with the wave, which
prevents the atom from being localized.

Figure 5 shows the change in transverse velocity under-
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gone by localized [Fig. 5(a)] and nonlocalized [Fig. 5(b)]
atoms on their entry into a spherical standing light wave,
calculated by means of Eq. (6). The laser field parameters
are as follows: PL = 0.11 W, Av = 400 MHz, R = 4 cm, and v
= 500 in/sec. The atomic motion calculations were made
both with and without taking the friction force into consid-
eration.

The nonlocalized atom received a push in the region where
the atomic trajectory is tangent to the wave front of the
standing wave. The reason for this is that the atom is acted
on by a gradient force of constant direction during a long
period of time. The direction of this force determines the
possibility of the atom's being localized or nonlocalized. Al-
lowing for the friction force reduces the oscillation ampli-
tude of the localized atom and substantially decreases the
initial momentum increment of the nonlocalized one.

B. Three-Level Atom and Optical Pumping
All the formulas given above were derived for a two-level
atomic model. In the case of a real, multilevel atom, there is
another factor-optical pumping-that must be taken into

0.00 0.25

Z [XI

0.50

(c)

Fig. 3. Spatial behavior of (a) the atomic potential energy, (b) the
friction coefficient, and (c) momentum diffusion in a standing light
wave. Go is the atomic transition saturation parameter and A is
the positive frequency detuning. The curve for Av = 500 MHz in (b)
and (c) coincides with the x axis.

account. Our experiments were performed with sodium at-
oms undergoing the 3 2S1/2 - 32 P3 /2 transition. A level dia-

gram of this transition is presented in Fig. 6. The standing
wave was produced by means of a linearly polarized laser
field, the frequency of which was detuned by -100 MHz to
the blue side from the frequency of the 32S1/2 (F = 2) -

32P3/2 (F' = 3) transition. This is the strongest transition,
and the laser frequency detuning relative to the frequency of
this transition is minimal compared with the rest of the
transitions. For this reason we used in our calculations of
the force acting on a sodium in the standing light wave a two-
level atomic model with a transition frequency correspond-
ing to the frequency of the actual F = 2 - F' = 3 transition in
the atom.

The standing light wave acted mechanically only on those
atoms that were at the F = 2 sublevel in the ground state. If
an atom moved to the F = 1 sublevel, it ceased interacting
with the field and was lost to observation, because it was only
the atoms in the 32S1/2 (F = 2) state that were detected in the
experiment.

The probability of a transition to the F = 1 sublevel for
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point of intersection with the atomic beam R = 40 mm, and
the laser beam diameter 2w = 0.6 mm. The atomic beam
profiles were calculated at a distance of L3 = 290 mm from
the atom-field interaction region and for three atomic veloc-
ity values: v = 611, 800, and 1035 m/sec.

It can be seen from Fig. 7 that, after interacting with the
standing light wave, the atomic beam gets split into two, so
that the left-hand peak corresponds to localized atoms and
the right-hand one to nonlocalized atoms. As the atomic
velocity grows higher, the number of localized atoms de-
creases. One can comprehend this effect most simply by
considering Fig. 1(b). The rise of the atomic velocity en-

Fig. 4. Atomic potential energy in the spherical standing light-
wave field for (1) a localized atom and (2) a nonlocalized one. Power
in a single traveling wave, PL = 0.11 W; Av = 400 MHz; R = 2 m; laser
beam diameter, d = 1 mm; localized atom velocity, v, = 500 m/sec;
nonlocalized atom velocity, v2 = 1200 m/sec. The curves reflect the
trajectories of localized and nonlocalized atoms.

localized atoms differs substantially from that for their non-
localized counterparts, the former moving mainly in the
vicinity of the standing-wave nodes where the field intensity
is materially lower than the wave-period-averaged intensity
governing the optical pumping of the latter. It follows from
consideration of the individual transition probabilities and
selection rules that sodium atoms move to the F = 1 sublevel
after being excited to the 32P 3/2 (F' = 2) sublevel, followed by
spontaneous relaxation to the F = 1 sublevel. Therefore, to
take account of optical pumping, we used a three-level
scheme whose transition frequencies corresponded to the
actual 32S1/2 (F = 2) - 3 2P3/2 (F' = 2) and 32S1/2 (F = 1) 
32P 3/2 (F' = 2) transitions. The theoretical relaxation rates
yl and 72, corresponding to transitions from the F' = 2
sublevel to the sublevels F = 1 and F = 2, respectively, and
the saturation intensity I,, corresponding to the F = 2 - F'
= 2 transition, were selected by proceeding from the corre-
spondence between the optical pumping measured experi-
mentally for sodium atoms in the traveling wave and that
calculated according to the three-level scheme. As a result,
the following values were obtained: -yl = 2 X 4.25 X 106
sec', 7Y2 = 2 X 0.75 X 106 sec (y + Y2 = 3.14 X 107 sec'),
and I = 40 mW/cm 2 .

We numerically calculated the localization of two- and
three-level atoms in a one-dimensional spherical standing
light wave. Figure 7 shows the atomic beam profiles pro-
duced after interaction with the spherical wave. The curves
in the left-hand column refer to the two-level atoms, and
those in the right-hand one to their three-level counterparts
undergoing optical pumping. The atomic beam and laser
field parameters were taken to be the same as in the experi-
ment: the angular divergence of the atomic beam 3 X 10-3
rad, the angle of entry of the beam into the standing light
wave ( = 7.3 X 10-3 rad, the laser field intensity I = 20 W/
cm2, the radius of curvature of the light-wave front at the
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Fig. 5. Variation of the transverse velocity of (a) a localized atom
and (b) a nonlocalized atom during their flight through the spherical
standing light wave.
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Fig. 6. Energy-level diagram of the ground and excited states of
the sodium atom and position of the laser field frequency relative to
the atomic transition frequency.
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hances the centrifugal force acting on the atom, which in
turn reduces the depth of potential wells in which atoms can
be localized; see Eq. (3).

The absolute number of localized atoms depends on the
effect of the atoms' being optically pumped from the sublev-
el F = 2 to the sublevels F = 1 (see Fig. 6) in the course of
interaction with the standing light wave. The dashed
curves in Fig. 7 show the atomic beam profiles in the absence
of the standing-wave field (the peak amplitudes are reduced
by a factor of 10). It can be seen that the optical pumping of
the atoms, while having no effect on the character of atomic
localization, changes the peak amplitudes for both localized
and nonlocalized atoms. Comparison between the peak am-
plitudes for the localized two- and three-level atoms with
velocities of 611 and 800 m/sec shows that the three-level
atoms undergo no optical pumping, which means that they
move in the vicinity of the standing-wave nodes where the
field intensity is at a minimum.
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Fig. 7. Transverse atomic beam profile in the measured region as a function of the longitudinal atomic velocity. The column on the left
contains beam profiles calculated for two-level atoms, and the one on the right, those calculated for three-level atoms with allowance made for
optical pumping. The dashed curves correspond to no-laser-field conditions (the vertical scale is reduced by a factor of 10).
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4. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 8.
To produce a spherical standing light wave, use was made of
single-frequency radiation from a cw dye laser. The laser
beam was focused with a lens (F = 160 mm) into the center of
curvature of a spherical mirror (R = 50 mm). To eliminate
parasitic feedback to the laser, the reflected laser beam was
made to propagate at a small angle to the incident one in a
plane normal to the atomic beam and then diaphragmed
with a 200-gm slit placed in the focal plane of the lens. The
standing-wave diameter (with reference to a factor-of-e2 in-
tensity reduction) at the site of intersection with the atomic
beam was 0.6 mm, the wave-front radius of curvature being
40 mm.

The beam of sodium atoms was shaped by two dia-
phragms. The one in the atomic source was a round hole 0.4
mm in diameter. The other was a slit with dimensions 1 =
0.17 mm and 12 = 0.5 mm. The distance between the dia-
phragms was L, = 290 mm. In that case, the angular diver-
gence of the atomic beam was 3 X 10-3 rad. The distance
between the laser beam and the slit diaphragm was L2 = 10
mm, the long side of the slit being parallel to the beam. The
atomic source temperature was T = 620 K.

The atomic beam profile was measured by means of probe
single-frequency radiation tuned to resonance with the
32S1I/2 (F = 2) - 32 P3 /2 (F' = 3) transition. For this purpose,
the probe beam focused with a long-focus lens was made to
traverse the atomic beam at an angle of 760 and to scan it
over an interval of 15 mm while remaining parallel to itself.
The measured region was at a distance of L3 = 290 mm from
the standing light wave. The probe radiation frequency was
set to fall within the Doppler absorption line contour of the
atomic beam. In the experiment we measured the atomic
fluorescence signal as a function of the coordinate of the
point of intersection between the atomic and probe laser
beams. The laser beam size (with reference to a factor-of-e2

intensity reduction) was 0.2 mm.
Because the probe laser bandwidth was approximately 10

MHz, the probe beam resonated only with atoms moving
with a certain longitudinal velocity, and so varying the probe
laser frequency within the limits of the Doppler atomic ab-
sorption line contour made it possible to investigate the

MIRROR

ATOMIC
BEAM

OVEN

D

LENS

LASER
BEAM

Fig. 8. Schematic of the experimental setup. D is the diaphragm
used to eliminate feedback to the laser.

localization of atoms as a function of their longitudinal ve-
locity.

The residual gas pressure in the vacuum chamber was
some 10-6 Torr.

5. EXPERIMENTAL RESULTS AND THEIR
COMPARISON WITH CALCULATION

Figure 9 presents the experimental results of the localization
of sodium atoms in the spherical standing light wave. The
curves are spatial profiles of the atomic beam in the mea-
sured region. The measurements were made for three atom-
ic velocity values: v = 611, 800, and 1035 i/sec. The laser
intensity in the atom-field interaction region was 20 W/cm2 .

It can be seen from the figure that, after interacting with
the standing light wave, the atomic beam gets split into two,
so that the left-hand peak corresponds to localized atoms
and the right-hand one to nonlocalized atoms. This infer-
ence follows from comparison with the calculated curves (see
Fig. 7) in which the left-hand peak represents the localized
atoms and the right-hand one their nonlocalized counter-
parts. As can be seen, the distance between the peaks in
experiment and theory agrees accurately enough. This dis-
tance is determined by the wave-front curvature and the size
of the laser field in the atom-field interaction region. In our
case (R = 40 mm, 2w = 0.6 mm, L3 = 290 mm), the distance
between the peaks is [see relations (5)] Az = maL3 = 4.3
mm.

Comparison between the experimental curves and their
theoretical counterparts calculated with due regard for the
effect of optical pumping shows them to agree qualitatively
well enough. At the same time, there are some differences.
At an atomic velocity of 611 m/sec, the experimental peak
corresponding to the localized is substantially narrower than
its calculated counterpart. This difference is much smaller
than what we found previously, 8 where no allowance was
made in calculations for the velocity dependence of the
atomic momentum diffusion coefficients. One possible ex-
planation of the remaining discrepancy is a stronger effect of
optical pumping on the atomic localization process.

Figure 10 shows the atomic beam profile in the measured
region as a function of the atoms' angle of entry into the
standing light wave, [see Fig. 1(b)]. The central profile
corresponds to the optimum angle of entry, Vopt = 7.3 X 10-3
rad, at which the number of localized atoms reaches its
maximum. The dashed curves show the atomic beam pro-
files in the absence of the field forming the standing wave
(the vertical scale is reduced by a factor of 10). The top and
bottom profiles demonstrate that changing the angle of en-
try s leads, first, to a decrease in the proportion of localized
atoms and, second, to a change in the distance between the
peaks due to localized and nonlocalized atoms.

As can be seen from Fig. 10, the position of the left-hand
peak depends only slightly on the atoms' angle of entry into
the wave. The reason is that in our case the divergence of
the atomic beam is comparable with that of the standing
wave. The variation of the distance between the peaks as a
function of the angle agrees well with the simple estimate Az
= 2(,p + opt)L3, where Az is the distance between the peaks
in the measured region located at a distance of L3 from the
standing light wave.

As can be seen from the top part of Fig. 10, there is a shift

Balykin et al.



Vol. 6, No. 11/November 1989/J. Opt.Soc. Am. B 2185

- Laser

- - - -No Laser

v=1035 m/sec

L i

calculations were made for an atomic velocity of v = 800 m/
sec and a laser field intensity of I = 20 W/cm 2 . As follows
from Eq. (8), variation of the laser field frequency changes
the gradient force, causing the localization of atoms. In our
experimental conditions the frequency detuning providing
for the maximum potential is AP = 140 MHz. As can be seen
from the results of calculations made without consideration
of optical pumping (right-hand column), it is exactly with
this detuning that the number of localized atoms must be a
maximum. And it is this situation that is observed in the
experiment (see the curves for AP = 140, 240 MHz). More-
over, the peak amplitudes for localized atoms are close to
those calculated for no-optical-pumping conditions, which
once more bears witness to the fact that the localized atoms
move close to the bottom of potential wells. As the frequen-
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Fig. 9. Experimental atomic beam profiles in the measured region
for various longitudinal atomic velocities. Laser frequency detun-
ing, Av = 90 MHz.

between the peak that is due to the nonlocalized atoms and
the peak without the laser. An explanation for this phe-
nomenon is shown in Fig. 5(b). When the angle of entry s is
small, the effect of the friction force is smaller then that of
the push that the atom receives in the standing-wave poten-
tial. The calculation confirms this result.

We also studied the behavior of the localized atoms as a
function of the laser field parameters. Figure 11 shows the
atomic beam profile in the measured region as a function of
the frequency detuning of the localizing laser field with
respect to the atomic transition frequency. The columns on
the left show experimental profiles, those in the middle
contain profiles calculated with allowance made for optical
pumping, and the right-hand columns show those calculated
without regard to optical pumping. The measurements and

0

y= 0.7 X 10-3

9=7.3 X 10-3

20 11 X 10-3

10 4-1n,

4 I

0

35 40 45

z
Fig. 10. Experimental atomic beam profiles for various angles of
atomic beam entry into the standing light wave s°. Laser frequency
detuning, Av = 140 MHz.
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Fig. 11. Transverse atomic beam profile as a function of the laser field frequency detuning with respect to the atomic transition frequency.
The column on the left shows experimental profiles, the one in the middle contains theoretical profiles calculated with consideration given to
optical pumping, and the right-hand one shows calculated profiles for a two-level atom.
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cy detuning is increased (AP = 440 MHz) or reduced (Ac = 60
MHz) with respect to the optimal value, the number of
localized atoms decreases in both theory and experiment. A
satisfactory agreement is also observed between the experi-
mental atomic profiles and their theoretical counterparts
calculated with due regard for optical pumping (center col-
umn).

In the course of atom-field interaction, not only atomic
localization but also the isolation of cold atoms occurs. One
reason for this cooling is the fact that only those atoms can
be localized in the standing wave whose transverse energy of
is not greater than the potential barrier height. Another is
the selectivity of the optical pumping process.

When experimenting with slower atoms one can observe
the localization effect at lower laser field intensities. The
minimum intensity at which the effect was still observable
well enough was Imi = 1.3 W/cm 2 at a frequency detuning of
Ac = 40 MHz, the corresponding atomic velocity being vmin =
270 m/sec. It was difficult to observe the effect at still lower
laser field intensities in our experimental conditions, there
being too few atoms moving with velocities below Vmin in the
thermal atomic beam. The conditions of atomic localization
under the minimum laser field intensity are sufficiently
close to the molasses conditions, 7 and therefore it appears
that the effect of atomic localization in a three-dimensional
standing light wave should also play a perceptible role.

6. CONCLUSIONS

We have presented the results of an investigation into the
localization of sodium atoms in a spherical standing light
wave. Based on a comparison between experimental and
theoretically calculated atomic beam profiles, the atoms are
convincingly demonstrated to undergo a sufficiently effi-
cient localization and channeling along the light-wave front.

Studies of the effect of optical pumping on the localization
process show that the localized atoms moving close to the
bottom of potential wells are subject, unlike their nonlocal-
ized counterparts, only to a weak pumping action.

ACKNOWLEDGMENT

The authors express their gratitude to S. Kittell for valuable
assistance in preparing the manuscript.

REFERENCES

1. V. S. Letokhov, Pis'ma Zh. Eksp. Teor. Fiz. 7, 348 (1968).
2. V. S. Letokhov and B. D. Pavlik, Appl. Phys. 9, 229 (1976).
3. V. S. Letokhov and V. G. Minogin, Appl. Phys. 17, 99 (1978).
4. J. P. Gordon and A. S. Ashkin, Phys. Rev. A 21, 1606 (1980).
5. A. P. Kazantsev, V. S. Smirnov, G. I. Surdutovich, D. V. Chudes-

nikov, and V. P. Yakovlev, J. Opt. Soc. Am. B 2, 1731 (1985).
6. H. G. Prentiss and S. Ezekiel, Phys. Rev. Lett. 56, 46 (1986).
7. C. Salomon, J. Dalibard, A. Aspect, H. Metcalf, and C. Tan-

noudji, Phys. Rev. Lett. 59, 1969 (1987).
8. V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov,

and S. V. Shui'ga, Opt. Lett. 13, 958 (1988).
9. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2,1707

(1985).
10. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on

Atoms (Gordon & Breach, New York, 1987).
11. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Opt.

Commun. 68, 103 (1988).
12. A. P. Kazantsev and I. V. Krasnov, Pis'ma Zh. Eksp. Teor. Fiz.

46, 264 (1987).
13. V. G. Minogin and Yu. V. Rozhdestvensky, Zh. Eksp. Teor. Fiz.

93, 1173 (1987).
14. A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 66, 1599 (1974).
15. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2,1707

(1985).
16. R. W. Hockney and J. W. Eastwood, Computer Simulation

Using Particles (McGraw-Hill, New York, 1981).
17. S. Chu, L. Hollberg, A. Cable, and A. Ashkin. Phys. Rev. Lett.

55,48 (1985).

Balykin et al.


