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Dynamics of atoms in a femtosecond optical dipole trap
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The semiclassical theory of atomic dynamics in a three-dimensional pulsed optical dipole trap formed by
superimposed trains of short laser pulses (down to a few fs duration), which is based on a stochastic formulation
for the dynamics of an open quantum system, is considered in detail. It covers all key features of the atomic
dynamics in the trap, including the dipole-dipole interaction (DDI) between trapped atoms due to the exchange
of virtual photons between the atoms. Analytical solutions are obtained for the relaxation and laser Liouvillians,
which describe the dissipation and laser excitation in the system, respectively. The probabilities of single-atom
and two-atom escapes from the trap are analyzed. As an example, the theory is applied to computer simulation
of Rb atoms preliminarily cooled in a magneto-optical trap that are trapped in a femtosecond optical dipole trap
(pulse duration 100 fs). Our simulations prove that such a trap effectively confines atoms at the pump laser power
in the range from a few mW to several kW. It is also shown that a near-resonant DDI, through which atoms
that are closely spaced in the micropotential wells interact with each other, can be significantly increased by
illuminating the atoms with a near-resonant probe laser beam. By varying both the parameters of the trap and the
intensity of the probe laser field, the role of the DDI in the atomic dynamics in the trap and its influence on the
single-atom and two-atom escape rates are clarified in detail.
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I. INTRODUCTION

For more than three decades since the pioneering proposal
by Letokhov to trap cold atoms in one dimension by using
a standing light wave [1], the manipulation of laser-cooled
neutral particles (atoms and, recently, molecules) based on the
dipole force exerted by light has become a widely used and
powerful tool in experiments studying such single particles
and the physics of their interaction with each other and
with light [2–5]. Optical dipole traps that are created by
superimposing two counterpropagating laser beams or one
laser beam superimposed with its mirror reflection form a
one-dimensional potential lattice (the so-called optical lattice),
and they can easily be made, for instance, two-dimensional by
using two pairs of counterpropagating laser beams whose prop-
agation directions are either perpendicular or form a nonzero
angle. Nowadays, such optical lattices are being used as a
very promising tool for experiments with ultracold atoms, for
studying the physics of quantum information processing, for
strongly interacting many-body systems on a lattice, etc. [6].

As of now, most optical dipole traps realized experimentally
use a continuous-wave (cw) laser that is very far detuned
from the atomic resonance of the trapped atoms (the so-
called “far-off-resonance trap” or FORT). Despite its obvious
advantage as a very simple and reliable device, a cw FORT
also has an essential drawback—atoms in such a trap always
interact with the field of the laser beam that forms the trap and
perturbs atomic states via ac Stark interaction. This leads to
the problem of systematic frequency shift, which can be solved
for some atomic transitions by using the so called “magic
wavelength” configuration [7,8]. However, the existence of
such a wavelength is accidental and the strategy of the “magic
wavelength” is thus not a universal one.

*yanyshev@physics.msu.ru

One can remove these disadvantages by replacing a cw
pump laser beam forming the trap with a train of short (pico-
or femtosecond) laser pulses when atoms are trapped in a
superimposed sequence of two counterpropagating trains of
pulses. In analogy with a regular cw FORT, we will call this trap
the pulsed FORT. In a pulsed FORT, an atom is not perturbed
by the trap laser fields during the time between the optical
pulses (for fs optical pulses, one can estimate that the trapped
atoms are exposed to the trapping field only 10−7–10−6 of the
holding time). Hence, such atoms can serve as an ideal object
for high-precision spectroscopy, metrology, and experiments
on the interaction of atoms with each other and an external
field.

The first proposal to use the dipole force resulting from
a series of interactions with short counterpropagating laser
π -pulses in the area where pulses overlap was made in Ref. [9].
This proposal was confirmed experimentally, first for focusing
and deflecting an atomic beam by using picosecond pulses
[10] and then in optical trapping of preliminarily cooled 85Rb
atoms by using cw and mode-locked lasers (some 103 atoms
were confined in the trap at ≈50 μK) [11]. A comparative
experimental study of loading 85Rb atoms from a magneto-
optical trap (MOT) to the pulsed and cw FORTs by using a
Nd:YAG laser in mode-locked (∼100 ps, 80 MHZ repetition
rate) or cw regimes was also reported in Ref. [12]. The laser
beam was focused to a waist radius of ∼16 μm, which gives for
the incident power of ∼7 W a potential depth of ∼2.1 mK for
the cw FORT and 40% lower depth for the pulsed FORT. The
authors observed that the pulsed and cw traps behave similarly
at the “identical” conditions, but the pulsed trap systematically
loaded fewer atoms than the cw one (5% and 8%, respectively).
They also found no essential difference in the holding time
and the loss rates for one- and two-body collisions between
traps. Atomic resonance frequency shift due to the periodic
perturbation of the atom in a pulsed FORT, which is different
from that in the case of a cw FORT, has been studied both
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theoretically and experimentally, and it was shown that this
shift can be eliminated by tuning the pulse energy (the so-
called “magic power” concept). This approach has universal
applicability, in contrast to the “magic wavelength” concept
[13,14].

Theoretical consideration of the pulsed FORTs is essen-
tially based on the well-developed theory of cw FORTs,
which largely describes the physics of cold collisions of
atoms in optical lattices [15,16]. Specifically in a FORT, in
addition to the mechanisms of trapping and simultaneously
cooling neutral atoms [2,3,5], one has to take into account
the interaction of each single atom with the vacuum modes of
the electromagnetic field, which results in the reabsorption of
photons emitted into a vacuum field and pairwise dipole-dipole
interaction (DDI) between atoms in the ground and excited
states, which results from the exchange of spontaneously emit-
ted photons between neighboring atoms [17–21]. The theory of
DDI and DDI-based cold collisions was extensively developed
for atoms in FORTs [15,16,22–27], including Rydberg atoms
[28,29]. Specifically, this theory predicted two-atom cold
collisions that, in the presence of an external near-resonant
light, are also called light-assisted collisions [27,30–32], which
were confirmed and analyzed experimentally [33–35].

Pulsed FORT formed by a superimposed train of fem-
tosecond pulses was first proposed by Balykin, who analyzed
the stochastic behavior of a trapped atom by considering a
simple model [36]. He demonstrated that it is possible to
avoid the stochastic behavior of the trapped atom within a
wide range of conditions imposed on the parameters of the
femtosecond FORT, and despite rather small values of the
depth of the femtosecond trap and the very short interaction
time of superimposed pulses with the atom (10−7–10−6 of the
holding time), an atom can be well-localized in the trap and
serve for further experiments in the absence of trapping fields.
Nevertheless, the problem of instability [37] and quantum
chaos with ultracold atoms [38] is one of the hot topics of the
dynamics of ultracold atoms in optical lattices [6,39]. Analysis
of a single atom’s dynamics in a one-dimensional pulsed
optical trap (with a laser pulse duration of 10−11–10−13 s)
was also performed in Ref. [40]. Our preliminary computer
simulation results for atomic dynamics in a femtosecond
three-dimensional (3D) FORT are outlined in Ref. [41].

Past research on the pulsed FORTs does not include detailed
theory (similar to that developed for cw FORTs) of atomic
dynamics in the pulsed trap, which would be three-dimensional
and would take into account all key features of the atomic
dynamics in the trap, namely, interaction of a single atom with
the vacuum electromagnetic field, the DDI of two atoms, and
interaction of atoms in the trap with external electromagnetic
fields (for instance, a near-resonant probe laser field). This
paper presents such a detailed semiclassical theory of atomic
dynamics in a pulsed FORT, as well as computer simulation
results based on this theory for the case of a femtosecond
FORT.

The paper is organized as follows. In Sec. II we describe
a pulsed FORT formed by superimposed trains of short laser
pulses with a pulse duration of down to a few femtoseconds.
The physical model of atomic dynamics in the pulsed FORT,
for which a stochastic formulation for the dynamics of an open
quantum system is used, is presented in Sec. III. The model

includes spontaneous decay of each separate atom in the trap,
as well as the effects related to the two-atom interaction, among
which the prevailing one is the near-resonant DDI due to the
exchange of virtual photons between the atoms via the vacuum
electromagnetic field in the field of probe laser radiation near-
resonant to the atomic transition. The derivation of the DDI
between atoms, as well as the relaxation part of the Liouvillian
of the system and its laser Liouvillian due to the interaction
with the probe laser field, is also presented in this section. It
is based on the theory of quantum random processes, which is
well-suited for describing open quantum systems. Technical
details of this derivation are given in the Appendices. Simple
analytical expressions and analysis are given in Sec. IV for both
one-atom and two-atom escapes from the trap (light-assisted
cold collisions). The details and results of computer simulation
of atomic dynamics in a pulsed fs FORT are discussed in Sec. V
using Rb atoms as an example. The power of the fs laser pulse
train that forms the trap can be varied to control the depth
of the FORT potential and therefore the holding time of the
trapped atoms. In computer experiments, we also analyzed
the role of the DDI interactions affecting the dynamics of
atoms in the FORT under the action of a near-resonant probe
laser field. By varying both the intensity and the frequency
detuning of the probe field, we modeled the DDI interactions
between atoms in short- and long-range limits and analyzed
single- and two-atom escape from the trap. In the final section,
we summarize our results and discuss some of the possible
applications of the femtosecond FORT.

II. MODEL OF THE PULSED FORT

In this work, we analyze the pulsed FORT, which aims to
minimize the effect of the localizing field on an atom(s), i.e.,
we analyze the influence of the short-term and time-periodic
action of the laser field on the spatial motion of a very slow
atom. In such a scheme, the atom is free of the perturbing effect
of the localizing field for a certain time interval (1−tp/T ),
where tp is the duration of the action and T is its repetition
period. When femtosecond pulses are used, the relative time
interval during which the atom is situated in the localizing field
may be very short, i.e., 10−7–10−6 of the total time interval
during which the atom is confined in the trap. As was shown
earlier [36], this approach provides a situation wherein the
atom is subjected to the localizing field for only (10−8–10−9)%
of the total time of its localization; i.e., the atom is almost free
(unbound).

The behavior of the particle under the action of a periodic
short pulsed force has been actively studied in connection
with the problem of classical and quantum chaos [37,38].
Analytical estimates in Ref. [36] and computer simulation
results presented therein show that, under certain (experimen-
tally realizable) conditions, it is possible to avoid chaos in
the motion of an atom and to achieve its long-term spatial
localization.

The basic idea of atomic localization by a periodic sequence
of short laser pulses first proposed in Ref. [9] is as follows.
Laser pulses are retroreflected from a mirror [Fig. 1(a)].
The incident and reflected pulses “collide” at a certain
distance from the mirror. The energy of a single femtosecond
pulse is spatially localized at a scale of l = c/tp, where c is the
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FIG. 1. (Color online) (a) Configuration of the pulsed FORT formed by a train of fs laser pulses. Two atoms, which are confined in the
trap and that could be used for studying the interactions between them, are shown in the figure. (b) Another setup for studying the interaction
between two closely spaced atoms, each of which is confined in a separate pulsed FORT formed by a train of fs laser pulses (femtotweezers).
Interatomic distance can be varied by changing the distance between the femtotweezers. (c) Pulsed FORT potential resulting from interference
of the incoming laser pulses and reflected from the mirror laser pulses in configuration (a).

speed of light and tp is the pulse duration. When the duration
of the laser pulse is extremely short, i.e., equal to the period of
light [42], its spatial size is equal to the laser wavelength:
l = λ. The region where pulses collide has the same size
and is the localization region for the atom. Depending on
the phase relations between the incident and reflected pulses,
either a maximum or minimum of the laser-field intensity is
attained at the center of the overlapping pulses due to their
interference. When the laser frequency is lower than the atomic
transition frequency and intensity is maximal, an atom placed
in the region of the pulse collision is subjected to the gradient
force of light pressure that is directed toward the center of the
pulse-overlapping region. For rather long fs pulses (100 fs),
one can introduce an effective potential of the trap, which is
similar to that of a cw FORT [3,5]. However, even when very
short, few-cycle light pulses are used, several minima of the
potential energy arise [Fig. 1(c)]. After the action of a light
pulse, the atom freely moves with a velocity determined by its
initial velocity and the momentum gained from the laser field.

For a pulsed FORT formed by retroreflecting a Gaussian
laser beam that consists of a train of laser pulses, the
wavelength of which is tuned far below the atomic resonance
frequency, the spatial intensity distribution of such a focused
beam with power P and wave vector k can be written as

I (r,z) = 2P

πw2(z)
exp

(
− 2

r2

w2(z)

)
cos2(kz),

where r is the radial coordinate and the 1/e2 radius w(z)
depends on the axial coordinate z as

w(z) = w0

√
1 +

(
z

zR

)2

.

Here w0 is the beam waist radius and zR = πw0
2/λ is the

Rayleigh length.
Assuming linear polarization of the trap laser field and in

the dressed atomic levels picture, the dipole trap potential for
a simple two-level atom at the position r = (r,z) takes the

form [5]

Udip(r) = 3πc2γ0

2ω0
3

I (r), (1)

where γ0 is the spontaneous decay rate of the atomic excited
state. This formula can also be extended to the case of alkali-
metal atoms, which are the major players in the experiments
with cold atoms. These atoms feature closed optical transitions
lying in a convenient spectral range, so that, e.g., for 87Rb,
23Na, 7Li, and 39,41K, this results in a well-known D line
doublet 2S12 → 2P1/2,

2P3/2. Neglecting the hyperfine splitting
of the levels, Eq. (1) extends to

Udip(r) = πc2γ0

2ω0
3

(
2

�2
+ 1

�1

)
I (r), (2)

where �1 and �2 are the frequency detunings of the laser
radiation from the frequencies of the atomic transitions
2S1/2↔2P1/2 and 2S1/2↔2P 3/2, respectively, and ω0 is the
resonance atomic transition frequency [5].

When an additional near-resonant probe laser field is
introduced, it modifies the potential of the trap due to a
redistribution of population from the ground energy level of
the trapped atoms. As a result, the optical potential becomes

Udip(r) = (n1 − n2)πc2γ0

2ω0
3

(
2

�2
+ 1

�1

)
I (r), (3)

where

n1 − n2 = 1 − 2g̃2
L(

1 + δ̃L
2 + 2g̃2

L

)
is the population difference between the ground and excited
levels, and δ̃L = �/γ0 and g̃L = �R/γ0 = dE/h̄γ0 are the
dimensionless frequency detuning and the Rabi frequency of
the near-resonant probe laser field, respectively [5].

One of the key characteristics of the spatial atomic
dynamics in the trap is the lifetime (or escape time) of the atoms
in the trap [43]. A single atom localized in a micropotential
well of the trap may escape from the well as a result of either
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heating due to the optical excitation or collisions with the
residual gas. We will not consider the latter mechanism in our
work as it is not of fundamental character and, in principle,
it can be eliminated in the experiment. At the same time,
the interaction of atoms in the trap with an electromagnetic
field is a fundamental process and needs to be considered
in detail. Simple estimates show that far-detuned from the
atomic resonance, laser field of the pump laser beam gives an
extremely low probability of absorbing and emitting photons.
However, the application of a near-resonant probe laser field
allows us to drastically enhance this rate, which significantly
affects the atomic dynamics in the trap [27].

In the case of several atoms localized in the trap, we need
to consider the laser cooling, heating, the radiative atomic
decay, and the near-resonant DDI between pairs of atoms. In
this case, when two atoms are localized in the same potential
well, their escape could be the result of a short-range DDI or
the so-called light-assisted cold collisions between two closely
spaced atoms [15].

In this work, we will study the dynamics of a single atom
and that of two closely spaced atoms confined in a pulsed
(femtosecond) FORT. The latter situation can be realized
by placing atoms in the same or adjacent potential well(s)
of the FORT potential [Fig. 1(a)]. Alternatively, one can
confine atoms in separate FORTs formed by the trains of
femtosecond optical pulses, the so-called “femtotweezers”
[Fig. 1(b)]. The distance between atoms can then be varied
by changing the distance between the femtotweezers. There
is not much difference, except for the experimental aspects of
their realization, between these two schemes, so that in the
following we will consider only the first scheme [Fig. 1(a)].

The parameters of the optical dipole trap used in our model
for numerical simulations throughout the paper were taken
similar to the parameters used in Ref. [36]. Specifically, we
studied the dynamics of Rb atom(s) cooled to a temperature
of about 155 nK and confined in the femtosecond red-detuned
FORT, which is formed by a laser beam focused to a ∼ 10 μm
from a pulsed laser with a pulse duration of 100 fs operating
at 850 nm in the configuration shown in Fig. 1(a).

III. PHYSICAL MODEL OF ATOMIC DYNAMICS IN A
PULSED FORT

Under the assumption that atoms in a pulsed FORT interact
with the classical electromagnetic field, the evolution of an
atom in a trap is governed by the master equation of the general
form for the density matrix ρ of an atom,

ih̄
dρ

dt
= [HA,ρ] + Lρ, (4)

where HA is the atomic Hamiltonian and L = Lrel + LL is
the total Liouvillian that is the sum of the relaxation and the
laser Liouvillians. The relaxation Liouvillian Lrel describes
the damping part, i.e., spontaneous decay of the atom due to
its interaction with the reservoir in thermal equilibrium with
the mean number of photons equal to zero [23] and interaction
of two atoms via exchange of virtual photons, i.e., via the
DDI. Laser Liouvillian LL describes the contribution to the
total Liouvillian due to the unperturbed dynamics of the atom

(free precession with the probe laser frequency ωL). These
Liouvillians are derived in Appendices C and D, respectively.

It is extremely difficult and in most cases even impossible
to find an exact analytical solution of master equation (4).
This leads to possible approximations that allow analytical
solutions, or combining analytics with numerical solutions.

In this work, the stochastic formulation of the dynamics of
an atom in a pulsed FORT, which is an open quantum system,
conveniently allows us to replace master equation (4) with the
Langevin-type stochastic differential equation governing the
atomic dynamics in the FORT:

mr̈i = −∇Udip(ri) + Fi(ri ,t) +
N∑
j

Fi,j (ri,j ,t), (5)

where m is the atomic mass, index i enumerates the trapped
atoms in the trap (up to N ), Udip is the dipole trap potential
[see Eq. (3)], and Fi , Fi,j are the radiation fluctuation forces
acting on a single atom due to the interaction with the vacuum
electromagnetic field and due to the pairwise (with the j th
atom) DDI, respectively. To solve such a stochastic differential
equation, we need to know the radiation fluctuation forces,
which are retrieved in this section, and then apply Monte Carlo
simulation to Eq. (5).

Over the past two decades, various stochastic formulations
of the dynamics of open quantum systems were mainly in the
field of quantum optics and in the context of the quantum mea-
surement problem [44,45]. In such a formulation, all processes
of atoms–vacuum-field and atoms–near-resonant-laser-field
interaction are considered in the Markov approximation, and
it is assumed that the fluctuation force F̂ acting on atom(s) due
to the interaction with the vacuum and near-resonant probe
electromagnetic fields can be treated as an external white noise.
We also limit our consideration to the case of a small number of
atoms in the trap, so that various collective effects are ignored.

Under these assumptions, the fluctuation force F̂ acting on
atom(s) can be described in terms of the correlation function
Gμν(τ ) for two atoms at the points R̂μ,R̂ν in space:

Gμν(τ ) = 〈F̂(R̂μ,0)F̂T(R̂ν,τ )〉, (6)

where the angle brackets denote averaging over both the
field and the internal atomic fluctuations. Superscript “T”
in the definition of the correlation function denotes vector
transposition that transforms the vector’s column F̂ into the
corresponding row, so that Gμν for fixed values of μ, ν is a
3 × 3 matrix.

In the diffusion approximation for the Markov process
describing the translational atomic dynamics in the FORT
and taking into account the space delocalization of the atomic
dipole moment, Eq. (6) can be recast in the form

Gμν(τ ) =
∫ ∫ 〈

∂

∂Rμ

d̂T(r − R̂μ,0)D(r − r′,τ )

× ∂

∂RT
ν

d̂(r′ − R̂ν,τ )

〉
dr dr′, (7)

where D(r − r′,τ ) = 〈Ê(r,0)ÊT(r′,τ )〉 and d̂ is the atomic
dipole moment operator.

As the next step, we will take into account translational
fluctuations due to the exchange of photons with the vacuum
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electromagnetic field by individual atoms and exchange of
virtual photons in between two atoms (interaction via the DDI)
in Eq. (7). In the dipole approximation, the corresponding
fluctuation force has the form

F̂d =
∫ √

h̄ω

4π2

∑
λ

d̂(t) · eλ(k)[âλ(k) exp(ikR̂τ − iωt)

− H.c.]ik dk, (8)

where âλ(k) are the photon annihilation operators and eλ(k)
are their polarization vectors. Then, assuming interaction with
the reservoir in thermal equilibrium with the mean number of
photons equal to zero [23] and using the approximation R̂τ =
R̂0 + v̂τ for the translational motion of atoms, the expression
governing the correlation matrix (7) takes the form

Gμν(τ ) =
∑

s

Ks(τ )
∫

h̄ω

4π2
dμ

⊥s · dν
⊥s exp

[
iωτ − δμν

h̄k2

2m
τ

− ik(R̂νμ + v̂νμτ )

]
kkTdk, (9)

where v̂ is the atom velocity operator, d̂⊥ is the transverse
projection of the atomic dipole moment onto the wave vector
k, andKs(τ ) ∼ 〈σ−

sμ(τ )σ+
sν(τ )〉 is the correlation function of the

sth atomic transition operator. Factor δμν in Eq. (9) determines
that the interaction between two different atoms occurs via
exchange of virtual photons without energy loss.

Then, the corresponding power spectral density of the
correlation function (9) can be written as

Nμν(ω̃) =
∫ ∑

s

Ss

[
ω − kv̂νμ − δμν

h̄k2

2m
+ ω̃

]
h̄ω

4π2
dμ

⊥s

· dν
⊥s exp(−ikR̂νμ)kkTdk, (10)

where the matrix function Ss is the Fourier transform of
the internal atomic correlation function Ks(τ ) in Eq. (9).
The correlation function Ks(τ ) can be calculated by using the
relaxation superoperator, which is derived in Appendix C. Note
that in these calculations one has to subtract the nonfluctuating
coherent spectrum contribution, which means that the atomic
transition operators are to be biased at their average values:

σ̂±
μ → �σ̂±

μ = σ̂±
μ − 〈σ̂±

μ 〉.
Further mathematical details of the calculations of the

correlation function of the fluctuation force acting on a single
atom and on two interacting atoms via the DDI are provided in
Appendices A and B. Below, we outline the results that were
used in our computer simulations. In the following, we will
also enumerate two interacting atoms with indices “1” and “2,”
so that the random force acting on them is F̂12. For the case of
a single atom, we designate it with the index “1” and denote
the respective random force acting on it as F̂11.

Then, as follows from Appendices A and B, the spectral
matrix for the random radiative force F̂11 acting on a single
atom in a pulsed FORT is

N11 = h̄ω5
0d

2

2πc5
〈
σ−

1 
σ+
1 〉I11, (11)

where I11 is the dimensionless 3 × 3 matrix, d =
(3h̄c3γ0/4ω3

0)1/2 is the atomic transition dipole moment,

γ0 is the decay rate of the atomic transition, ω0 is the
atomic transition frequency, and σ̂± are the atomic transition
operators.

For two atoms in a pulsed FORT interacting via the DDI,
the respective spectral matrix for the random radiative force
F̂12 acting on both atoms in the trap is equal, as follows from
Appendix B, to

N12 = N21 = h̄ω5
0d

2

2πc5
〈
σ−

1 
σ+
2 〉I12, (12)

where I12 is the dimensionless 3 × 3 matrix, which is deter-
mined by the geometry of the atomic dipole moments with
respect to the vector of atomic displacement and to the wave
vector of the emitted photon.

For the case of the atomic dipole moments parallel to each
other and orthogonal to the vector of displacement between
the atoms, i.e.,

d1
⊥ ‖ d2

⊥ ⊥ R12, (13)

we have (see Appendix B)

I11 = π

⎛
⎜⎝

8
15 0 0

0 16
15 0

0 0 16
15

⎞
⎟⎠, I12 = π

⎛
⎜⎝

Ĩ1 0 0

0 Ĩ2 0

0 0 Ĩ3

⎞
⎟⎠, (14)

where

Ĩ1 = 4
(
9 − ϕ2

12

)
cos ϕ12

ϕ4
12

− 4
(
9 − 4ϕ2

12

)
sin ϕ12

ϕ5
12

,

Ĩ2 = 4
(
3 − ϕ2

12

)
cos ϕ12

ϕ4
12

− 4
(
3 − 2ϕ2

12

)
sin ϕ12

ϕ5
12

, (15)

Ĩ3 = −4
(
12 − 3ϕ2

12

)
cos ϕ12

ϕ4
12

+ 4
(
12 − 7ϕ2

12 + ϕ4
12

)
sin ϕ12

ϕ5
12

and ϕ12 = R12(ω0/c) is the dimensionless interatomic dis-
tance.

In the case of a single atom, i.e., at R12 → 0, Eqs. (15)
simplify to

Ĩ2 = Ĩ3 = 2Ĩ1 = 16
15 , (16)

i.e., they yield the same value as the one that can be obtained by
direct integration for a single atom. Note also that fluctuations
along the direction of the dipole moment are two times weaker
than in the orthogonal directions.

In the limit of long-range interactions, i.e., at R12 � λ, we
have

Ĩ1 = Ĩ2 = 0, Ĩ3 = 4 sin ϕμν

ϕμν

, (17)

which means that the long-range fluctuations are the ones along
the interatomic distance.

In Eqs. (11) and (12), 〈
σ1
−
σ2

+〉 is the correlation
function of the operator of exchanging photons between two
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FIG. 2. (Color online) Correlation functions 〈
σ−
1 
σ+

1 〉 (a) and 〈
σ−
1 
σ+

2 〉 (b) vs the dimensionless Rabi frequency g̃L and the frequency
detuning δ̃L of the probe laser field.

atoms [Fig. 2(b)], which reads

〈
σ−
1 
σ+

2 〉 = −4ζ g̃4
L

(
1 + 4δ̃2

L

)
[
(1 + ζ )2 + 4

(
g̃2

L + δ̃2
L

) + 4(1 + ζ )2δ̃2
L + 4

(
g̃2

L + 2δ̃2
L

)2]2 , (18)

where g̃L = gL/γ0 (gL = Ed/h̄) and δ̃L = �/γ0 are the
dimensionless Rabi frequency and frequency detuning of the
probe laser field, respectively, and

ζ = 3

2

ϕ cos ϕ − sin ϕ + ϕ2 sin ϕ

ϕ3
(19)

is the dimensionless geometrical factor, which in the limit of
the long-range interactions, i.e., at R12 � λ, simplifies to [see
Eq. (C5)]

ζ = 3 sin ϕ/2ϕ. (20)

For closely spaced atoms, at R12 → 0, Eq. (19) yields
ζ = 1, which corresponds to total correlation of stationary
excitations. The case of antiparallel dipole moments dμ,dν

corresponds to another limiting value ζ = −1. It is worth
noting that the combination of Eqs. (14) and (20) yields an
inverse square dependence on the interatomic distance with a
positive sign of the ζ I factor.

Then, assuming that ζ = 1 in the limit for a single atom,
one can calculate the correlation function of the fluctuations
of a single atom [Fig. 2(a)], which has the form

〈
σ−
1 
σ+

1 〉 = 2g̃4
L

[
1 + 2

(
g̃2

L + δ̃2
L

)2 + (
1 + 4δ̃2

L

)]
[
4 + 4

(
g̃2

L + δ̃2
L

) + 16δ̃2
L + 4

(
g̃2

L + 2δ̃2
L

)2]2 .

(21)

The correlation function of the operator of exchanging vir-
tual photons between two atoms 〈
σ−

1 
σ+
2 〉, which describes

the DDI between atoms, reaches its maximum at detuning
δ̃L = −1 when the interaction force between atoms has its
maximum value with respect to fluctuations of the random
radiation force acting on a single atom. This maximum is
reached at g̃L = 1.4, which corresponds to the probe laser
field intensity I = 3.14 mW/cm2.

It is also worth calculating the so called normalized
correlation coefficient, or simply the DDI efficacy (see Fig. 3),

κ = N12

N11
= −2ζ

(
1 + 4δ̃2

L

)
A3

, (22)

where

N11 ∝ 〈�σ−
μ �σ+

μ 〉 = 2g̃4
LA3

A2
0

,

A3 = [
1 + 2

(
g̃2

L + 2δ̃2
L

)]2 + ζ 2
(
1 + 4δ̃2

L

)
.

It follows from Eq. (22) that the correlation effects are most
vividly observed in the weak field limit, at ELd/h̄ � γ0, i.e.,
at the extreme values of κ = ∓1, which correspond to ζ = ±1
and δ̃L = 0.

FIG. 3. (Color online) The DDI efficacy κ vs the dimensionless
Rabi frequency g̃L and the frequency detuning δ̃L of the probe laser
field.
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IV. ANALYSIS OF ONE- AND TWO-ATOM ESCAPES
FROM THE TRAP

In this section, we will perform a simplified analysis of the
atom escapes from the FORT. In the stochastic formulation
of the dynamics of atoms in a pulsed FORT outlined in
Sec. III, the events of escape of one atom or several atoms
simultaneously from the FORT (we will limit our consideration
to two-atom escapes because the probability of multiple-atom
escape from the trap is negligibly low) can be described
by the stationary correlation matrix Kμν = 〈R̂μ,R̂ν〉, which,
similarly to Sec. III, has the form

Kμν = 2π2Nμν

m2�3
[λ+λ−(λ+ + λ−)]−1,

λ± = 1√
2

[
1 − ε

2
±

√(
1 − ε

2

)2

− ε2

4

]−1

, ε = 4ω2

�2
,

(23)

where we assume that, as in Ref. [5], the damping rate � due
to the damping forces acting on an atom in the FORT is

� = 4πh̄ω2

mc2

g̃2
L

g̃2
L + δ̃2

L + 2

−δ̃L(
1 + δ̃2

L

)2

and the temperature of atoms in the trap can be estimated as
T = N11/(kBm�); Nμν is the power spectral density of the
fluctuation force due to the emission radiation [see Eq. (10)],
and we also assume that a nonperiodic behavior at ε < 1 plays
a major role [46].

Integration of the probability density f (p) over space,
|x1| > a, . . . ,|xn| > a, where a is the size of the trap, yields a
probability Pn of escape of n atoms out of N trapped atoms,
which is represented by the ket-vector x of their momenta and
xT = (x1, . . . ,xN ) is the corresponding bra-vector. Under the
assumption of the Gaussian character of the fluctuations, the
probability density is given then by the function

f (p) = det−1/2 (2πK) exp
(− 1

2xTK−1x
)
. (24)

In the case of R̂μ,R̂ν � a and using a linear local
approximation of the Gaussian exponential in Eq. (24), we
have

Pn = det−1/2(2πKn)

an
exp

[
−a2

2

∑
kj

(−1)νj +νk
∣∣K−1

n (j,k)
∣∣]

×
[

n∏
k=1

∑
j

∣∣(−1)νj +νkK−1
n (j,k)

∣∣ ]−1

(25)

for the probability of n atoms escaping simultaneously from
the trap, with different signs in the limit R̂k > a or R̂k < −a,
depending on the νk in (−1)νk . Here K−1

n is the n × n submatrix
of the total N × N inverse correlation matrix K−1.

For simplicity, let us consider the case of an atomic
ensemble that consists of just two equivalent atoms, i.e.,
N = 2. In this case, the spectral density matrix has only
two independent matrix elements N12 = κN11, where κ is the
DDI efficacy. Then, in accordance with Eq. (23) we have two
independent correlation matrix elements, K11 and K12. In this
case, the probabilities (25) for n = 1,2 are determined then by
three independent probabilities, which are as follows:

FIG. 4. Integration of the probability density over the domains
of atomic escape for two trapped atoms. The probability distribution
is shown as a gray-scale-map graph and corresponds to κ ≈ −1.
Out-of-the-center areas at the corners on the plot show probabilities
π±

2 at which both atoms escape together from the trap having either
positive or negative momenta (indicated by the respective superscript
sign of the probability). The rest of the out-of-center areas show
probability π±

1 at which only one atom escapes from the trap. The
central area corresponds to the case when no one atom escapes from
the trap.

(i) π1 = P(x1 > a) is the probability for one of the atoms
to escape with positive momentum, while the second atom
remains in the trap.

(ii) π−
2 = P(x2 < −a) is the probability for both atoms to

escape together, one having positive and the other one having
negative momentum.

(iii) π+
2 = P(x2 < −xc) is the probability for both atoms

to escape together, each having a positive momentum.
Other escape probabilities coincide with those listed above,

as shown in Fig. 4. Also, the probability for the atoms not
to escape and remain captured in the trap is equal to π0 =
1 − 4π1 − 2(π−

2 + π+
2 ).

To analyze the atomic escape probabilities, let us introduce
the so called escape variables εk = −1,0,1 for the kth atom.
The escape variable εk = −1 corresponds to the escape of
the kth atom from the trap with negative momentum, εk = 0
corresponds to the case when the kth atom remains in the trap
(no escape), and εk = +1 corresponds to the case when the kth
atom escapes from the trap with positive momentum. Then,
the joint probability can be represented by the corresponding
matrix:

P(ε1,ε2) → P =

⎛
⎜⎝

π−
2 π1 π+

2

π1 π0 π1

π+
2 π1 π−

2

⎞
⎟⎠ . (26)

Then, one can express the probabilities π1, π+
2 , and π−

2 in
terms of the correlation matrix K:

π1 =
√

K11

2πa2
exp

(
− a2

2K11

)
,

(27)

π±
2 = K11

2πa2

√
1 ± κ

1 ∓ κ
exp

[
− a2

K11(1 ± κ)

]
.
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FIG. 5. A sample trajectory of a Rb atom confined in a femtotrap.
The depth of the trap potential is equal to 1 mK, and the probe
near-resonant laser is switched off.

Evidently, in the absence of correlations between atoms, we
should simply have P2 = 2P 2

1 , where P2 = 2π−
2 + 2π+

2 and
P1 = 2(π1 + π−

2 + π+
2 ) are the total probabilities of two-atom

and single-atom escapes, respectively. This is equivalent to the
simple relation π−

2 = π2
1 , which follows from Eq. (27).

V. COMPUTER MODELING OF ATOMIC DYNAMICS IN A
PULSED fs FORT

In this section, we consider computer modeling of atomic
dynamics in a pulsed fs FORT, which is based on the Monte
Carlo simulation of the Langevin-type stochastic differential
equation (5) for the atomic dynamics in the trap. As we
demonstrated in Sec. III, in this approach the radiation
fluctuation forces acting on atoms can be readily calculated,
and analytical formulas for them were derived. In order to
simulate these forces on a computer, we model them by
independent random forces, the amplitudes of which are
generated by a computer random number generator in such
a way as to preserve the given level of the mean-square
fluctuations of these forces. Specifically, we use the following
formula for the mean-square dispersion of the integral of
the radiation force acting on an atom during the sampling

time �t :

σλ
ij

2
(�t) =

[ ∫ �t

0
Fλ

ij (τ ) dτ

]2

= Nλ
ij�t, (28)

where the indices i,j label the atoms, Fλ
i,j are the projections

of the radiation fluctuation force Fi,j on axis, λ = x,y,z, and
Nλ

i,j are the nonzero components of the power spectral density
matrix N calculated from Eqs. (11) and (12), which describe
the diagonal elements of the 3 × 3 submatrices of the block-
matrix of the form

N =
(

N11 −N12

−N12 N11

)
.

Projections of forces Fλ
i = ∑

j Fi,j , which satisfy relation
(28), can be written as

Fλ
1 = (√

12
∣∣Nλ

11 + Nλ
12

∣∣/�t ξλ
1

−
√

12
∣∣Nλ

11 − Nλ
12

∣∣/�t ξλ
2

)/√
2,

(29)
Fλ

2 = (√
12

∣∣Nλ
11 + Nλ

12

∣∣/�t ξλ
1

+
√

12
∣∣Nλ

11 − Nλ
12

∣∣/�t ξλ
2

)/√
2,

where ξλ
1,2 are independent random variables uniformly dis-

tributed in the interval [−1/2,1/2], which can be generated by
a regular computer random numbers generator.

In a computer experiment, we studied the dynamics of Rb
atom(s) cooled to about 155 nK and confined in a femtotrap,
which is formed by a laser beam focused to a ∼ 10 μm from
a pulsed laser with a pulse duration of 100 fs that operates
at 850 nm in the configuration shown in Fig. 1(a). As was
mentioned above, the dynamics of trapped atoms is governed
by the Langevin-type stochastic differential equation (5),
which we integrated numerically with a variable time step
of the order of 1 fs. This model includes all mechanisms
of atomic interaction with the vacuum electromagnetic field
(pairwise DDI interaction inclusive), as well as interaction
with the probe near-resonant laser field, which is described in
detail in Sec. III.

In our calculations, we assumed that the pulsed fs FORT is
formed by a train of fs pulses with linear polarization. Then, it
is also reasonable to assume that the atomic dipole moments

FIG. 6. The lifetime of a Rb atom confined in a femtotrap vs the power (on a logarithmic scale) of the laser beam forming the trap focused
to 10 μm (right figure). The left figure shows this dependence at low power values in detail.
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FIG. 7. (Color online) Phase portraits for a Rb atom confined in a femtotrap at two different powers of the laser beam forming the trap:
1 W (left) and 5 kW (right).

of the atoms trapped in the potential wells are parallel to each
other and orthogonal to the displacement vector between the
atoms, i.e., the geometry condition (13) is fulfilled.

A sample trajectory of a Rb atom confined in the fs
FORT is shown in Fig. 5. From this figure, one can
clearly see that the atom confined in the femtotrap rapidly
oscillates along the z direction of the FORT and makes slow
precession along the circle in the plane perpendicular to the
beam direction. It is also important to note that the confined
atom is tightly localized (within a few dozen nm) in the z

direction, whereas localization in the radial direction is about
0.2 μm. In the first approximation, the oscillation frequencies
of the trapped atoms are equal to ωr = (4U0/mw2

0)1/2 in the
radial direction and ωz = k(2U0/m)1/2 in the axial direction,
respectively [5].

Let us now examine how the lifetime of the atoms confined
in the femtotrap depends on the power of the trap laser beam
(Fig. 6). For low power (well below 1 mW) of the laser beam
forming the trap, which is too low to confine atoms, the lifetime
of atoms in the trap is obviously rather short and is determined
by the time it takes for an atom to cross the laser beam, e.g.,
about 10 ms (Fig. 6, left). It drastically increases with the
increase in laser power up to 1 mW. Above this threshold,
atoms are confined in the femtotrap for an infinite (under
certain conditions) time. However, with further increase in
laser power beyond the upper threshold of about 4 kW, the
lifetime of the atoms sharply drops. Therefore, our simulations

give an optimal range from 1 mW to 4 kW for the power of the
laser beam forming the femtotrap to efficiently trap Rb atoms.

Phase portraits for a Rb atom confined in the fs FORT at two
different levels of power of the laser beam forming the trap
are shown in Fig. 7. They clearly demonstrate two limiting
cases: the confinement of an atom in the trap at powers in
the optimal range (left figure) and its escape from the trap at
powers beyond this range (right figure). A single atom escapes
from the trap due to its radiative heating (see Ref. [36] for
details).

Now, let us analyze the influence of the DDI on the atomic
dynamics in the fs FORT. The model used to describe the
DDI, which was always taken into account in our calculations,
is outlined in Sec. III. Despite the DDI between the atoms in
the trap being rather weak, it can be significantly enhanced by
illuminating the atoms by a near-resonant cw probe laser field
(for Rb atom, its wavelength lies in the vicinity of 780 nm).
Figure 8 shows a sample trajectory and a phase portrait of an
atom trapped in the fs FORT, which escapes from the trap due
to the action of the resonant probe laser field.

Figure 9 shows the lifetime of the atom trapped in the fs
FORT under the action of the near-resonant probe laser field
that surely causes the heating of the atom and its radiative
escape. This simplified picture becomes more complicated
in the 3D case, when we consider a tightly focused laser
beam in our calculations, so that the Stark shift of the atomic
transition depends on the position of the atom in the beam

FIG. 8. (Color online) Sample trajectory (left) and phase portrait (right) for a Rb atom confined in the fs FORT under the action of a probe
laser field that is near-resonant with the atomic transition with a power of 1 W.
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FIG. 9. (Color online) The lifetime of a Rb atom confined in the
cw and fs FORTs vs the dimensionless Rabi frequency g̃L of the probe
laser field, which is tuned in the resonance with the atomic transition
(δ̃L = 0). The average power of the laser beam forming both traps in
our calculations is equal to 1 W.

and changes during the temporal dynamics of an atom in the
trap. Keeping in mind that the frequency shift of the probe
laser field that is near-resonant with the atomic transition
is a constant value, the position-varying Stark shift results
in the position-varying heating of the atom as well as the
position-varying Doppler cooling force, which are both taken
into account in our calculations. For comparison, Fig. 9 shows
the lifetime of the atom trapped in a cw FORT that is formed by
a cw pump laser of the same power as the average power used
for the fs FORT. The comparison of the trapping efficacy of the
cw and the pulsed fs FORTs clearly demonstrates that, at low
values of the dimensionless Rabi frequencies, the cw FORT
outperforms its femtosecond counterpart, but upon increasing
the dimensionless Rabi frequency of the probe laser beam, at
g̃L � 2, both traps trap the atoms equally well. Note that, in
the absence of the probe laser field, the lifetime of an atom in

both cw and fs FORTs is infinitely long in our model, provided
that there are no collisions with the residual gas, etc.

The dependencies of the lifetime of a single atom and
two neighboring atoms trapped in the femtotrap calculated
from our computer experiments are shown in Fig. 10.
For the experiments with a single atom, one can clearly see
that the lifetime is drastically decreased (compare with Fig. 6).
The slow decrease in the lifetime upon increasing the distance
of the atom from the center of the beam is obviously due to
the slow drop of the intensity of the beam forming the trap at
the current location of the atom.

In the experiments with two atoms interacting via the DDI,
their lifetime in the trap versus the distance between the atoms
behaves very differently. As follows from the DDI model
(Sec. III), interaction between atoms is most vividly revealed
when the atoms are located in the closest micropotentials (first
point on the left in the corresponding dependence in Fig. 10)
and results in a decrease in the lifetime by a factor of 4.5 times
relative to the case of a single atom. This difference is naturally
decreased upon increasing the distance between the atoms and,
finally, at a distance of 3λ (the second atom is located inside
the 10th micropotential from the center of the beam forming
the trap), it almost completely coincides with the dependence
for a single atom. In Fig. 10, the value of the probe laser
beam frequency detuning from the atomic resonance is equal
to γ0, which is the optimal value, as can be seen from Fig. 3,
which illustrates the dependence of the DDI efficacy κ on the
dimensionless frequency detuning δ̃L of the probe laser field
predicted by Eq. (22). On can see from this figure that the peak
of the DDI efficacy is reached at the frequency detuning of the
probe laser beam nearly equal to γ0.

VI. CONCLUSION

In conclusion, we presented a detailed semiclassical theory
of atomic dynamics in a 3D pulsed optical dipole trap, which

FIG. 10. (Color online) The lifetime of a single atom and two neighboring atoms trapped in a femtotrap. For the pair of atoms, this time is
plotted vs the distance R12 between the atoms normalized to the wavelength of the formation of the trap laser beam, one of which is located
in the center (x, y, z = 0) of the focused beam, and the second one is located in the neighboring potential well. For the experiments with a
single atom, the holding time is plotted vs the normalized distance between the center of the trap and the potential well in which the atom is
located. The train of the femtosecond pulses forming the trap with a power of 1 W is focused on spots with a diameter of 5 μm (a) and 1 μm
(b), respectively. The intensity of the probe laser beam is equal to 5Isat, where Isat is the saturation intensity of the atomic transition, and the
frequency of the probe field is detuned from the resonance with this transition by ∼γ0, which is the decay time of the transition. Each point on
the plots is an average over 10 computer realizations.
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is formed by a superimposed train of short laser pulses (down
to a few fs duration), based on the stochastic formulation of the
dynamics of an open quantum system. It covers all key features
of the atomic dynamics in the trap, including the DDI between
trapped atoms due to the exchange of virtual photons between
them. Analytical solutions are obtained for the relaxation
and laser Liouvillians that describe the dissipation and laser
excitation in the system. The probabilities of a single-atom and
two-atom escape from the trap are analyzed.

This theory was applied to computer simulation of the
dynamics of Rb atoms preliminarily cooled in a MOT trapped
in a femtosecond optical dipole trap (pulse duration 100 fs).
The computer simulation proved that such a trap effectively
confines atoms at a pump laser beam power between 1 mW
and 4 kW. It is shown that an atom can be localized with
absolute accuracy in a few tens of nanometers range. The time
interval during which the atom remains in the laser field is
only 10−7–10−8 of the total localization time.

One of the key advantages of the femtosecond FORT is
that interaction of trapped atoms with an external field(s) and
between each other can take place within the time interval
between the fs pulses, i.e., in the absence of any pump field.
This makes it feasible to use the femtosecond FORT for high-
precision measurements that cannot be arranged otherwise. As
an example, we consider a near-resonant DDI through which
a single trapped atom or atoms that are closely spaced in
the micropotential wells interact. This interaction is negligibly
small without an external near-resonant probe field, however it
can be drastically enhanced in an experiment by illuminating
the atoms with a cw near-resonant to the atomic transition
probe laser field. We presented a model for the DDI and our
calculations clarified in detail how the DDI enhanced by the
near-resonant laser field affects the atomic dynamics in the
trap.

The physics of cold collisions between atoms in a FORT
can be studied experimentally not only by means of the tra-
ditionally used analysis of one- and two-atom losses from the
trap, but also using spontaneous fluorescence and resonance
fluorescence from the atoms in the trap. As was shown in theory
and confirmed experimentally, the system of two two-level or
multilevel atoms interacting via the DDI is a source of quantum
entanglement [47–49], as well as a source of cooperative
effects in atomic fluorescence, which reveal themselves in the
form of macroscopic quantum jumps (light and dark periods),
both in ions and atoms [50–52]. Moreover, this fluorescence
and, therefore, the interaction between the atoms in the trap
can be microscopically resolved [53]. In addition, it was shown
that analysis of quantum features of the resonance fluorescence
from a system of two colliding neutral or ionized atoms with
excited states that exhibit fine-structure splitting can reveal the
collisional dynamic correlations between the atoms, making
resonance fluorescence a sensitive probe of atomic dynamics
in the trap [54].

Increasing the number of trapped atoms in an optical lattice
also brings new physics into play. For example, for a large
ensemble of Rydberg atoms in an optical lattice interacting
via the long-range DDI, it is predicted that such a system
occasionally exhibits collective quantum jumps between the
states with low and high Rydberg populations [39].
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APPENDIX A: CALCULATION OF THE CORRELATION
FUNCTION OF THE FLUCTUATION FORCE ACTING

ON A SINGLE ATOM

For a single atom exchanging photons with the vacuum
electromagnetic field, Eq. (10) governing the power spectral
density of the correlation function (9) versus frequency ω

shifted due to the recoil momentum simplifies (with μ = ν) to

N (ω̃) = h̄

4π2c5

∫ ∑
s

Ss

[
ω

(
1 − nv̂

c
− h̄ω

2mc2

)
+ ω̃

]

× d2
⊥snnTω5dω dn. (A1)

From this equation, one can easily see that the power
spectral density of the force fluctuations is given by the integral
over frequencies ω̃ of emitted photons and their directions
n = k/k, where the Doppler shift and the recoil energy are
taken into account. For integration over velocities, one can
use the Doppler-broadened spectrum SDs instead of spectrum
Ss for a fixed atom, so that, for the case of isotropic Doppler
broadening, the fluorescence spectrum takes the form

N (ω̃) = 2

15

h̄

πc5

∫ ∞

0

∑
s

d2
s SDs

[
ω

(
1 − h̄ω

2mc2

)
+ ω̃

]

×ω5dω(P ‖
s + 2P ⊥

s ), (A2)

where P
||
s and P ⊥

s are the projection matrices onto the
directions of the dipole moments and the orthogonal planes,
respectively.

For simplicity, let us assume now that SDs can be treated as
a narrow spectrum around the central frequency ωs . To neglect
the recoil energy, let us consider only the spectral range with
ω̃ � ωs . Then, using the integral equation

∫
SDsdω = 2πns ,

where ns is the excited-state population of the sth transition,
which corresponds to τ → 0 in the correlation function σ̂−

s σ̂+
s ,

and replacing ns with ns − 〈σ̂−
s 〉〈σ̂+

s 〉 in order to get rid of the
coherent part of the spectrum, we get finally

N (ω) = h̄2

5c2

∑
s

γsω
2
s (ns − 〈σ̂−

s 〉〈σ̂+
s 〉)(P ‖

s + 2P ⊥
s ), (A3)

where γs is the radiation decay rate of the sth atomic transition.
From this formula, one can easily see that, at low fre-

quencies (ω � ωs), the power spectral density of the force
fluctuations does not depend on frequency and, therefore,
ideally mimics the white noise. Also, the spectral density
is proportional to the photon emission rate of each atomic
transition and has an anisotropic character, i.e., the intensity of
the components orthogonal to ds exceeds the intensity of the
parallel ones by a factor of 2.

033411-11



YANYSHEV, BALYKIN, VLADIMIROVA, AND ZADKOV PHYSICAL REVIEW A 87, 033411 (2013)

APPENDIX B: CALCULATION OF THE CORRELATION
FUNCTION OF THE FLUCTUATION FORCE ACTING

ON TWO INTERACTING ATOMS

Now, we will describe mathematically the interaction of
two atoms via the DDI in the near-resonant probe laser field.
For simplicity, we will neglect fluctuation frequencies ω̃

with respect to frequencies ∼ωL of photons emitted by the
atoms. Then, we can replace the correlation function Gμν(τ )
in Eq. (9) with the δ function with respect to the time scale of
interest, which means that we are interested only in calculating
the integral value Nμν = ∫ ∞

−∞ Gμν(τ )dτ . The spectral width
of the atomic emission fluctuations under the integral in
Eq. (9) is narrow with respect to that of the fluctuations of the
vacuum electromagnetic field, so that one can simply use the
correlation function Ks(τ ) = 〈σ−

sμσ+
sμ〉 exp(−ωst) in Eq. (9)

and neglect the Doppler shift term for the same reason. As
a result, the power spectral density Nμν of the correlation
function Gμν(τ ) takes the form

Nμν =
∑

s

h̄ω5
s d

2
s

2πc5
〈�σ−

sμ�σ+
sν〉

×
∫

eμ

⊥s · eν
⊥s exp(−iωsnRνμ)nnTdn (B1)

with the correlation function 〈�σ−
sμ�σ+

sν〉 of the sth atomic
transition operator being nonzero due to the correlations
caused by the virtual photon exchange between the atoms
(DDI). The DDI term also enters into the multiatomic
relaxation operator derived in Appendix C.

For the case of the atomic dipole moments parallel to each
other and orthogonal to the vector of displacement between
the atoms, i.e.,

eμ

⊥s ‖ eν
⊥s ⊥ Rμν, (B2)

the integral in Eq. (B1), which we will denote as I , can be
expressed analytically in a simple way:

I =
∫

eμ

⊥s · eν
⊥s exp(−iωsnRνμ)nnTdn

= π

⎛
⎝ Ĩ1 0 0

0 Ĩ2 0
0 0 Ĩ3

⎞
⎠ (B3)

with

Ĩ1 = 4
(
9 − ϕ2

μν

)
cos ϕμν

ϕ4
μν

− 4
(
9 − 4ϕ2

μν

)
sin ϕμν

ϕ5
μν

,

Ĩ2 = 4
(
3 − ϕ2

μν

)
cos ϕμν

ϕ4
μν

− 4
(
3 − 2ϕ2

μν

)
sin ϕμν

ϕ5
μν

, (B4)

Ĩ3 = −4
(
12 − 3ϕ2

μν

)
cos ϕμν

ϕ4
μν

+ 4
(
12 − 7ϕ2

μν + ϕ4
μν

)
sin ϕμν

ϕ5
μν

,

where ϕμν = ωsRμν/c, and the z and x axes are set along the
Rμν and the atomic dipole moment, respectively.

After calculation of the integral in Eq. (B1), the power
spectral density Nμν simplifies to

Nμν = 3πh̄2

8c2

∑
s

γsω
2
s 〈�σ−

sμ�σ+
sν〉I

→ h̄2

5c2

∑
s

γsω
2
s 〈�σ−

sμ�σ+
sν〉(P ‖

s + 2P ⊥
s ), (B5)

where, in contrast to Eq. (A3) for the power spectral density
of the correlation function for a single atom, the single-atom
dispersion is replaced with the interatomic correlation: ns −
〈σ̂−

s 〉〈σ̂+
s 〉 → 〈�σ−

sμ�σ+
sν〉. It also follows from Eq. (B5) that

the force fluctuations are correlated if there are correlations be-
tween incoherent oscillations of the atomic dipole transitions.

APPENDIX C: CALCULATION OF THE RADIATION
RELAXATION LIOUVILLIAN

The relaxation superoperator Lrel, or the so-called radiation
relaxation Liouvillian, of the diffusion stochastic process in
the form of the average second commutator is

Lrel = − lim
�→0

1

h̄2�

∫ �

0
dτ2

∫ τ2

0

〈[ ∑
k

(
σ̂+

k ξ̂−
kτ1

+ σ̂−
k ξ̂+

kτ1

)
,

[∑
m

(
σ̂+

m ξ̂−
mτ2

+ σ̂−
m ξ̂+

mτ2

)
,�

] ]〉
dτ1, (C1)

where σ̂± are the atomic transition operators, ξ̂± are the
reservoir noises (due to the interaction of atoms with the
vacuum field) acting on the corresponding atomic transitions,
and the substitution symbol � should be replaced by the
transforming operator variable. The above relation can be
recast in the form

Lrel =
∑

Lk +
∑
k �=m

Lkm, (C2)

where the first sum describes the radiative decay of individual
atoms in the trap, and the second sum represents the DDI be-
tween pairs of atoms due to the exchange of virtual photons be-
tween them via the vacuum electromagnetic field [44,55]. Here

Lkm = −γkl

2
(σ̂−

k σ̂+
m � + � σ̂−

k σ̂+
m − σ̂−

k � σ̂+
m − σ̂−

m � σ̂+
k ),

(C3)

where we omitted the analog of the Lamb shift, and

γkl = lim
2

h̄2�

∫ �

0

∫ τ2

0
Re e

〈
ξ̂+
kτ1

ξ̂−
mτ2

〉
dτ1dτ2

=
∫ ∞

−∞

∫
ω

4h̄π2
dk

⊥ · dm
⊥ exp[i(ω − ωa)τ − ikR̂km]dk dτ

= ω3
a

2πh̄c3

∫
dk

⊥ · dm
⊥ exp(−iωanR̂km/c)dn. (C4)

For the geometry specified in Eq. (B2), Eq. (C4) simplifies
to

γkl = γ0ζ, ζ = 3

2

ϕ cos ϕ − sin ϕ + ϕ2 sin ϕ

ϕ3
, (C5)

where ϕ = ωaRkl/c and γ0 is the atomic decay rate [56].
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In the absence of the near-resonant probe laser excitation,
the relaxation superoperator (C3) can be simplified by intro-
ducing symmetric and antisymmetric types êk ⊗ êl ± êl ⊗ êk

of the dynamic variables in the eigenbasis ê of the relaxation
superoperator. In the case of two-level atoms in the single-atom
basis of dimension n = 4, for example, we get 16 elements
with the two-atomic basis, including four diagonal basis
elements êk ⊗ êk , six symmetric and six antisymmetric. Keep-
ing in mind that any physically feasible evolution operator
always has zero matrix elements between the symmetric and
antisymmetric subspaces, one can reduce it to 10-dimensional
space. In the general case of ζ < 1, the corresponding 10
eigenvalues are listed below:

λ = γ0

(
0,−1 + ζ,−1 + ζ

2
,−1 + ζ

2
,−1,−1,−1 − ζ,

− 3 + ζ

2
,−3 + ζ

2
,−2

)
. (C6)

Hence, for the closely spaced atoms (ζ = 1), there are only
two independent stationary states, corresponding to λ0 = 0
and λ1 = −1 + ζ = 0, respectively. The eigendensity matrix
basis elements, corresponding to these two zero eigenvalues,
are

ρ̂0 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ and ρ̂1 =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1
2 − 1

2 0

0 − 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

(C7)

respectively. Here we used the wave-function basis |00〉,
|01〉, |10〉, and |11〉, where “0” and “1” mark the atomic
ground and excited states, respectively. The first matrix
in Eq. (C7) corresponds to the two-atomic vacuum state,

while the second one corresponds to the sum of the density
matrix of the ground state |00〉 (with negative sign) and the
coherent antisymmetric excitation of both interacting atoms.
The corresponding eigenbasis êk of the physical variables has
an identity matrix equal to the null eigenvector and the matrix

ê1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1
2 − 1

2 0

0 − 1
2

1
2 0

0 0 0 1−g

1+g

⎞
⎟⎟⎟⎟⎠ , (C8)

corresponding to the 1−ζ eigenvalue. The null eigenvector
represents an antisymmetric coherent excitation with the
population of the excited state given by (1 − xi)/(1 + ζ ).

APPENDIX D: CALCULATION OF THE LASER
LIOUVILLIAN

The dynamics of an atom driven by a probe near-resonant
laser field is described by free precession with the laser
frequency ωL and the corresponding contribution LL to the
total Liouvillian, which, in the rotating wave approximation
(RWA), has the form

LL = i
∑

μ

gLμ

2
[σ̂1μ,�] − i

∑
μ

δL

2
[σ̂3μ,�], (D1)

where σ̂1μ,σ̂3μ are the Pauli matrices for the μth atom, gLμ

is the corresponding Rabi frequency, and δL is the frequency
detuning of the probe laser field.

For the geometry specified in Eq. (B2), we have gLμ = gL.
Then, using a 10-dimensional representation of the total super-
operator L = Lrel + LL, one can calculate its eigenvalues and
the stationary null-space vector. The corresponding stationary
density matrix has the form

ρ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1
A0

g̃L(i+2δ̃L)A2

A0

g̃L(2δ̃L+i)A2

A0

g̃2
R(2δ̃L+i)(2δ̃L+i+iζ )

A0

g̃L(2δ̃L−i)A∗
2

A0

g̃2
L(1+4δ̃2

L+g̃2
L)

A0

g̃2
L(1+4δ̃2

L)
A0

g̃3
L(2δ̃L+i)

A0

g̃L(2δ̃L−i)A∗
2

A0

g̃2
L(1+4δ̃2

L)
A0

g̃2
L(1+4δ̃2

L+g̃2
L)

A0

g̃3
L(2δ̃L+i)

A0

g̃2
L(2δ̃L−i)(2δ̃L−i−iζ )

A0

g̃3
L(2δ̃L−i)

A0

g̃3
L(2δ̃L−i)

A0

g̃4
L

A0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D2)

where g̃L = gL/γ0,δ̃L = δ/γ0, and

A0 = (1 + ζ )2 + 4
(
g̃2

L + δ̃2
L

) + 4(1 + ζ )2δ̃2
L + 4

(
g̃2

L + 2δ̃2
L

)2
,

A1 = (1 + ζ )2 + 2
(
g̃2

L + 2δ̃2
L

) + 4(1 + ζ )2δ̃2
L + (

g̃2
L + 4δ̃2

L

)2
,

A2 = 1 + 4δ̃2
L + ζ + 2iδ̃Lζ + g̃2

L.

By using the two-atom density matrix (D2), one can calculate any characteristic of the internal atomic dynamics, including the
correlation matrix Ks(τ ) = 〈σ−

sμσ+
sμ〉 exp(−ωst), which is used to determine the force correlation matrix (9).
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